DEPARTMENT OF MATHEMATICS (UG)

About the department

The Department of Mathematics of G.T.N. Arts College established in the year 1964 is well known for imparting quality education. The Post graduate and Under Graduate programs (Self supporting courses) were started in the academic year 2016-17. The Department has experienced,` dedicated, committed and highly qualified faculty members with various specializations. Our staff members have written many books and published more than 100 research articles in National \& International journals of repute. It has got its alumni well placed in India and abroad. The Department is consistently conducting Workshops, Seminars and other academic activities in every year. Under the able guidance and dedication of faculty members, our students have registered remarkable achievements in various academic activities

PRINCIPAL

Dr. P. Balagurusamy, M.A., M.Phil., M.Ed., P.G.D.C.A., Ph.D.,

STAFF MEMBERS

Aided
1.Tmt. N. Sakunthala, M.Sc., M.Phil., B.Ed., PGDCA Associate Professor and Dean of Student's Affairs (Women)
2. Dr. S. Ramachandran, M.Sc., M.Phil., Ph.D.,
3. Dr. C. Subramani, M.Sc., M.phil., SET., Ph.D., Assistant Professor and Head
4. Dr. J. KaligaRani, M.Sc., M.Phil., Ph.D., Assistant Professor
5. Dr. P. Pandiammal, M.Sc., M.Phil., Ph.D.,

Assistant Professor Assistant Professor

Self Supporting PG

1. K.Sujatha, M.Sc., M.Phil.,

Assistant Professor and Head
2. N.Sumathi, M.Sc., M.phil.,
3. Dr. A. Mohamed Ali, M.Sc., M.phil., Ph.D., PGDCP.,

Assistant Professor
Assistant Professor
4. A. Bhaalamurugan M.Sc., M.Phil., B.Ed.,

Assistant Professor

Self Supporting UG

1. A.Theeba.,M.Sc., M.Phil., B.Ed.,

Assistant Professor and Head
2. S.Rajkumar, M.Sc., M.Phil.,
3. M.Devi Priya, M.Sc., M.Phil., M.Ed.,
4. G.A.Pradheepa, M.Sc., M.Phil.,
5. S.Divya Priya, M.Sc., M.Phil.,
6. P. Sathya, M.Sc., M.Phil., B.Ed.,
7. V. Kasivisalakshi Praveena, M.Sc., M.Phil., PGDCA
8. K. Sankar, M.Sc., M.Phil., B.Ed.,
9. S. Tharani M.Sc., M.Phil.,

Assistant Professor

Programme Outcomes for Science

On successful completion of the B.Sc. programme, the graduates will be able to,

1. Apply the knowledge acquired in the respective disciplines and also have a multidisciplinary perspective towards the study of sciences.
2. Attain skills like analytical reasoning, critical thinking and problem solving to evince interest in higher education and research for offering solutions to societal and environmental problems.
3. Communicate articulately and effectively and interpret the results obtained from scientific studies and put forth innovative ideas to carve a niche in their domain.
4. Instill the principles and ethics learnt from the field of study and exhibit the qualities like leadership, entrepreneurship and teamwork for discharging their duties as responsible citizens.
5. Utilize the growing advancements in Information and Communication Technology and embrace digital learning to become life-long learners

Program Specific Outcomes (PSOs)

After the completion of three year under graduation programme of Mathematics, the students will be able to
PSO1: Exhibit the acquired knowledge of mathematical concepts in various domains of science and technology.

PSO2: Interpret the constructed theoretical concepts of mathematics and its contemporary.

PSO3: Apply the strategies of mathematics effectively to obtain (designing) optimal solutions.

PSO4: Develop the skills of problem solving, analytic reasoning and logical thinking.
PSO5: Interpret and generate information with mathematical concepts and statistics.

PSO6: Identify the applications of Mathematics in various disciplines
PSO7: Defend the various levels of competitive examinations.
PSO8: Acquire computation, programming and software skills to get empowered with Employability and Entrepreneurial skills

PSO9: Gaining Language of grammatical, conventions, varities, formulations, courses and culture becoming competent to face competitive examination through development of language skills.

PSO10: Acquire knowledge of the emerging environmental challenges and provide the possible contribution in sustainable development that integrates environment, economy and employment.

PSO11: Exemplify the human values, morals and be socially responsible citizen of this country.

PSO12: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Under Choice Based Credit System (CBCS)
 Under Graduate Courses

G.T.N. Arts College (Autonomous), a pioneer in higher education institution in India, strives to work towards the academic excellence. The new Outcome Based Education (OBE) system allows enhanced academic mobility and enriched employability for the students. At the same time this system preserves the identity, autonomy and uniqueness of every department and reinforces their efforts to be student centric curriculum designing and skill imparting. This new system will work concertedly to achieve and accomplish the following objectives:

1. Optimal utilization of resources both human and material for the academic flexibility leading to exemplary outcome.
2. Students experience or enjoy their choice of courses and credits for their horizontal mobility.
3. The existing curricular structure as specified by TANSCHE and other higher educational institutions facilitate the Credit- Transfer Across the Disciplines (CTAD) a uniqueness of the Choice Based Credit System.

Course Pattern for B.Sc., (Mathematics)

The Undergraduate degree course consists of five vital components. They are as follows: Part I Language (Tamil / French)
Part II English
Part III Core Course (Theory, Practical, Core Electives, Allied).
Part IV Skill Based, Self Paced, Non Major Electives, Soft Skills, Environmental Studies and Value Education.
Part V Physical Education (Practical) and Extension Activities.

Objectives

The Syllabus for B.Sc.,(Mathematics). Degree under semester system has been designed on the basis of Choice Based Credit System (CBCS), which would focus on job oriented programmes and value added education. It will be effected from June 2020 onwards.

Eligibility

Candidates should have passed the Higher Secondary Examination, Government of Tamil Nadu or any other examination accepted by the syndicate of Madurai Kamaraj University as equivalent there to.

Duration of the Course

The students who join the B.Sc.., Degree shall undergo a study period of three academic years - Six semesters.

Summary of Hours and Credits
B.Sc Mathematics

Part	Semester	Specification	No. of Courses	Hrs	Credits	Total
I	I - IV	Languages (Tamil / French)	4	24	12	12
II	I - IV	English	4	24	12	12
III	I - VI	Core Courses Theory Electives Project	$\begin{gathered} 12 \\ 2 \\ 1 \end{gathered}$	$\begin{gathered} 62 \\ 8 \\ 2 \end{gathered}$	$\begin{gathered} 54 \\ 6 \\ 2 \end{gathered}$	102
		Allied Courses Theory Practical	$\begin{aligned} & 8 \\ & 3 \end{aligned}$	$\begin{gathered} 38 \\ 6 \end{gathered}$	$\begin{gathered} 34 \\ 6 \end{gathered}$	
IV	I \& II	Non Major Elective Courses	2	4	4	20
	I \& II	1. Value Education 2. Environment and Gender Studies	2	4	4	
	V\&VI	Skill Based Courses Theory Practical	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	
	III \& IV	Self Study Courses (Soft Skills I \& Soft Skills II)	2	-	4	
V	II	Physical Education - Practical (Non-Semester Course)	1	-	2	4
	IV	Extension Activities	1		2	
		Total	46	180	150	150

Course Pattern - from 2020-2021 Batch -B.Sc Mathematics

Se \mathbf{m}		Part	Course Code	Course Title	Hr./ week	Credit
In	I	Tamil I / French I	20UTAL11/ 20UFRL12	jw;fhy ftpijAk; rpWfijAk; French Language And Civilization I	6	3
	II	English I	20UENL11	English Language through literature I	6	3
	III	Core Course I	20UMAC11	Differential Calculus	4	3
		Core Course II	20UMAC12	Classical Algebra	4	3
		Allied Course I	20UPHA11	Allied Physics - I	6	4
	IV	Non Major Elective Course 1	20UMAN11	Fundamentals of Mathematics	2	2
		Value Education	20UVEV11	Value Education	2	2
Total					30	20
II	I	Tamil II / French II	20UTAL21/ 20UFRL22	gf;jp ,yf;fpaKk; GjpdKk; French Language And Civilization II	6	3
	II	English II	20UENL21	English Language Through Literature II	6	3
	III	Core Course III	20UMAC21	Integral Calculus	4	3
		Core Course IV	20UMAC22	Sequences and series	4	3
		Allied Course II	20UPHA21	Allied Physics - II	4	4
		Allied Practical I	20UPHA2P	Allied Physics practical I	2	2
	IV	Non Major Elective Course II	20UMAN21	Statistical Methods	2	2
		Environment and Gender Studies	20UEGS21	Environment and Gender Studies	2	2
	V	Physical Education Practical	20UPEV2P	Physical Education Practical (Non Semester)	-	2
				Total	30	24
III	I	Tamil III / French III	20UTAL31/ 20UFRL31	fhg;gpa ,yf;fpa Kk; ciueilAk; French Language And Civilization III	6	3
	II	English III	20UENL31	English Language through literature III	6	3
	III	Core Course V	20UMAC31	Mechanics	6	5
		Core Course-	20UMAC32	Analytical	6	5

Allied Courses

There will be Eight Allied courses (Physics and Mathematics) to fulfill the B.Sc., (Mathematics) programme during three years.

Subject	Maximum Marks	Year of Study
Allied Physics I	100	I
Allied Physics II	100	I
Allied Physics Practical I	100	I
Allied Physics III	100	II
Allied Physics IV	100	II
Allied Physics practical II	100	II
Numerical Methods with C	100	III
Numerical Methods with C Programming	100	III
Graph theory	100	III
Mathematical Statistics- I	100	III
Mathematical Statistics- II	100	III

The Syllabus for the Allied Courses can be obtained from the Allied Departments.

Courses offered to Non-major students by the Department of Mathematics (UG)
Supportive:

Sem	Par t	Course Code	Course Title	For the Department	Hr/ wk	Cr .	Mark \mathbf{s}
I	III	20UMAA1 1	Allied Mathematics - I	B.Sc(Physics Chemistry)	6	5	100
II	III	20UMAA1 2	Discrete Mathematics	 IT), BCA	4	4	100
III	20UMAA2 1	Allied Mathematics - II	B.Sc(Physics Chemistry)	6	5	100	
III	III	20UMAA2 2	Operations Research	 IT), BCA	4	4	100
III	III	20UMAA3 2	Allied Mathematics - III	Business Statistics	Bnd Chysics Chemistry)	6	5
BBA	6	100					
IV	III	20UMAA3 3	Numerical Methods	B.Sc,. (CS \&IT)	4	4	100
IV	III	20UMAA4 2	Allied Mathematics - IV	Business Mathematics	B.Sc. Chemistry)	6	5
BBA	6	4	100				
IV	III	20UMAA43	Quantitative Aptitude	 IT)	4	4	100

Practicals

Record Note Book	$:$	10 marks
Internal	$:$	30 marks
External examination	$:$	60 marks
Total	$:$	100 mark

Value Added Courses (with effect from the academic year 2021-22 onwards)
The Department of Mathematics has offered the following Value Added Courses for UG students.
(i) Mathematics for competitive examinations I
(ii) Mathematics for competitive examinations II
(iii) Mathematics for competitive examinations III
(iv) Mathematics for competitive examinations IV

Value Added Courses

The Department of Mathematics is offering the following Value Added Courses for thirty hours for all the UG students with no prejudice to the Under Graduate programme results.

Sl.No.	Semester	Course Code	Course Title
1.	III	20CMAT31	Developing Quantitative Aptitude I
2	IV	20CMAT41	Developing Quantitative Aptitude II

Value Added Courses (with effect from the academic year 2022-23 onwards)
Under DBT Star College Scheme, the following Value Added Courses are introduced with effect from the academic year 2022-23 onwards by the Department of Mathematics.

Sl.No.	Semester	Course Code	Course Title
1.	III	20CMAT3P	Python Programming
2	IV	20CMAT4P	SAGEMATH (20CMAT4P)
3	V	20CMAT5P	Office Automation (20CMAT5P)
4	VI	20CMAT6P	LATEX (20CMAT6P)

Extra Credit Self Paced Courses for Advanced Learners:

(i) Discrete Mathematics - I
(ii) Discrete Mathematics - II
(iii) Resource Management Techniques - I
(iv) Resource Management Techniques - II

Programme	B.Sc.(Mathematics)	Programme Code	UMA
Course Code	20UMAC11	No. of Hrs per cycle	4
Semester	I	Max. Marks	100
Part	III	Credit	3
Core Course I			
Course Title	Differential Calculus		
Cognitive level: Upto K3			

Preamble

To provide fundamentals of differentiation and show their significant role in upper level maths, science, engineering, physical, economical and industrial world.

Unit I

12 Hours
Successive differentiation $-\mathrm{n}^{\text {th }}$ derivative - standard results - trigonometric transformations. Formation of equations involving derivatives - Leibnitz Formula for the $n^{\text {th }}$ derivatives of a product Meaning of a derivative - geometrical interpretation- meaning of the sign of the differential co-efficient - Rate of change of variable - velocity and acceleration.

Unit II

12 Hours
Total differential co-efficient - Implicit functions -Jacobians - maxima and minima of functions of two variables - sub tangent and sub normal - Differential coefficient of the length of an arc of $y=f(x)$

Unit III

12 Hours
Polar co-ordinates.-Angle between the radius vector and the tangent - Slope of the tangent - Angle of intersection of two curves. Polar sub tangent and polar subnormal length of arc in polar co-ordinates.- Envelopes

Unit IV

12 Hours

Curvatures - circle radius and centre of curvature - Cartesian formula for the radius of the curvature - Parametric and implicit form of the radius of the curvature - the co-ordinates of the centre of curvature.

Unit V

12 Hours
Evolute -Properties of evolute- involute - polar coordinates - radius of curvature in polar co-ordinate - p-r-equation; pedal equation of curves - chord of curvature passing through the poles.

Pedagogy

Classroom lectures, ICT, Participatory method of teaching, group discussion andQuiz

Text Books

1. T K M. Pillay \& S.Narayanan (2008), Differential Calculus, Volume I, Vishwanathan Pvt.Ltd Chennai.
2. Vittal \& V.Malini. P.R,(2010), Calculus, Margham Publications Chennai.

Reference Books

1. Arumugam. S. (2011) Calculus New Gamma publications Palayamkottai.
2. Veerarajan .T. (2012) Engineering Mathematics for I year ,Tata McGraw-Hill publications New Delhi
3. Venkataraman. M.K (2010) Engineering Mathematics Volume I The National Publishing Company Chennai.

E-Resources

IIT Lectures, UGC GyanDharshan videos

- http://ndl.iitkgp.ac.in
- http://ocw.mit.edu
- http://mathforum.org
- https://nptel.ac.in/course.html

Course outcomes

At the end of the course, students would be able to:

CO 1	Find $n^{\text {th }}$ derivative and understand the geometrical meaning of a derivative and rate of change of variable
CO 2	Develop problem solving skills using total differential coefficient and know the concept of maxima and minima
CO 3	Acquire knowledge in polar sub tangent and subnormal
CO 4	Solve problems in radius center and circle of curvature.
CO 5	Learn to solve problems in evolute and p-r equations of curves

Mapping of Programme specific outcomes with Course Outcomes

	$\begin{array}{\|c} \hline \text { PSO } \\ 1 \end{array}$	$\begin{gathered} \text { PSO } \\ 2 \end{gathered}$	$\begin{array}{\|c} \hline \text { PSO } \\ 3 \end{array}$	$\begin{gathered} \hline \text { PSO } \\ 4 \end{gathered}$	$\begin{gathered} \hline \text { PSO } \\ 5 \end{gathered}$	$\begin{gathered} \hline \text { PSO } \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { PSO } \\ 7 \end{gathered}$	$\begin{gathered} \hline \text { PSO } \\ \mathbf{8} \end{gathered}$	$\begin{gathered} \hline \text { PSO } \\ 9 \end{gathered}$	$\begin{aligned} & \hline \text { PSO1 } \\ & 0 \end{aligned}$	$\begin{gathered} \hline \text { PSO1 } \\ \hline 1 \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { PSO1 } \\ & 2 \end{aligned}$
$\begin{aligned} & \mathrm{CO} \\ & 1 \end{aligned}$	3	2	2	2	1	2	2	1	1	1	1	1
$\begin{aligned} & \mathrm{CO} \\ & 2 \\ & \hline \end{aligned}$	3	3	2	3	1	2	2	1	1	1	1	1
$\begin{aligned} & \mathrm{CO} \\ & 3 \end{aligned}$	2	3	3	2	1	2	2	1	1	1	1	1
$\begin{aligned} & \mathrm{CO} \\ & 4 \\ & \hline \end{aligned}$	3	3	3	3	1	2	2	1	1	1	1	1
$\begin{aligned} & \mathrm{CO} \\ & 5 \end{aligned}$	2	3	3	3	1	2	2	1	1	1	1	1

1-Low 2-Moderate 3-High
Articulation Mapping-K Levels with Course Outcomes (COs)

Units	Cos	K - Level	Section A		Section B	Section C
			MCQs		Either/Or Choice	Open choice
			No. of Question s	K-Level	No. of Questions	No. of Questions
1	CO1	Up to K3	2	K1 \& K2	2(K2\&K2)	1(K3)
2	CO2	Up to K3	2	K1 \& K2	2(K2\&K2)	1(K3)
3	CO3	Up to K3	2	K1 \& K2	2(K2\&K2)	1(K3)
4	CO4	Up to K3	2	K1 \& K2	2(K2\&K2)	1(K3)
5	CO5	Up to K3	2	K1 \& K2	2(K2\&K2)	1(K3)
No of Questions to be asked			10		10	5
No of Questions to be answered			10		5	3
Marks for each Question			1		4	10
Total Marks for each Section			10		20	30

K1-Remembering and recalling facts with specific answers.
K2-Basic understanding of facts and stating main ideas with general answers
K3-Application oriented-Solving problems

Distribution of Section-wise Marks and K Levels

K Levels	Section A (No Choice	Section B (Either/or)	Section C (open choice)	Total Mark s	\% of Marks without choice	Consolidated (Rounded off)
K1	5	-	-	5	5%	5%
K2	5	40	-	45	45%	45%
K3	-	-	50	50	50%	50%
Total Marks	10	40	50	100	100%	100%

Lesson Plan

Unit	Description	Hours	Mode
I	Successive differentiation \& $\mathrm{n}^{\text {th }}$ derivative	1	Lecture ,Chalk \& Talk
	Standard results	2	Chalk \& Talk
	Trigonometric transformations	1	Chalk \& Talk
	Formation of equations involving derivatives	1	Chalk \& Talk
	Leibnitz Formula for the nth derivatives of a product	3	Chalk \& Talk
	Meaning of a derivative \& geometrical interpretation	1	Chalk \& Talk
	Meaning of the sign of the differential co-efficient	1	Chalk \& Talk
	Rate of change of variable \& velocity and acceleration	2	Chalk \& Talk
II	Total differential co-efficient	2	Chalk \& Talk
	Implicit functions	2	Chalk \& Talk
	Jacobians	2	Chalk \& Talk
	Maxima and minima of functions of two variables	3	Chalk \& Talk
	Sub tangent and sub normal	2	Chalk \& Talk
	Differential coefficient of the length of an arc of $y=$ $\mathrm{f}(\mathrm{x})$	1	Chalk \& Talk
III	Polar coordinates	1	Chalk \& Talk
	Angle between the radius vector and the tangent	2	Chalk \& Talk
	Slope of the tangent	1	Chalk \& Talk
	Angle of intersection of two curves	1	Chalk \& Talk
	Polar sub tangent and polar subnormal	2	Chalk \& Talk
	Length of arc in polar co-ordinates	2	Chalk \& Talk
	Envelopes	3	Chalk \& Talk
IV	Curvatures	1	Lecture, Chalk \& Talk
	Circle radius and centre of curvature	2	Chalk \& Talk
	Cartesian formula for the radius of the curvature	3	Chalk \& Talk
	Parametric and implicit form of radius of curvature	2	Chalk \& Talk
	Co-ordinates of the centre of the curvature	4	Chalk \& Talk
V	Evolute\& Properties of evolute	4	Chalk \& Talk
	Involute \& Polar coordinates	2	Chalk \& Talk
	Radius of curvature in polar coordinates	2	Chalk \& Talk
	p-r-Equation - Pedal equation of curves	3	Chalk \& Talk
	Chord of curvature passing through the poles	1	Chalk \& Talk

Course Designed by, Prof. N. Sakunthala

Programme	B.Sc.(Mathematics)	Programme Code	UMA
Course Code	20UMAC12	No. of Hrs per cycle	4
Semester	I	Max. Marks	100
Part	III	Credit	3
Core Course II			
Course Title	Classical Algebra		
Cognitive Level: Up to K3			

Preamble:

The students are introduced to the different methods of solving polynomials with real coefficients and acquire sound knowledge in Inequality.

Unit I

12 Hours

Theory of Equations - Reminder Theorem - Fundamental theorem of algebra Symmetric function of roots - Sum of the powers of the roots of an equation-Newton's theorem on sum of the powers of the roots - Transformation of equations - Roots with signs changed - Roots multiplied by the given number

Unit II

12 Hours
Reciprocal equation -To increase or decrease the roots by given quantity-Horner's method - Removal of terms Unit III

12 Hours
Transformation in general - Nature and position of roots - Descarte's rule - Roll's theorem - Multiple roots - Solutions of numerical equations - Integral roots - Newton's method of divisors.

Unit IV

12 Hours
Sturm's Theorem - Sturm's function - Solution of cubic equation - Cardon's method - Bi-quadratic equation-Ferrari's method
Unit V
12 Hour
Inequalities - Triangular inequalities - Arithmetic, Geometric and Harmonic mean

- Cauchy Schwarz inequalities - Wierstrass inequalities- simple problems.

Pedagogy

Class Room lectures, ICT, Participatory method of teaching, Group discussion and Quiz

Text Books

1. Narayanan.S \& Manickavasagampillai .T.K, (2011), Algebra Volume I S.Viswanathan Publication, Chennai
2. Arumugam.S, and Issac. A.T., (2011), Classical Algebra, New Gamma Publications house, Chennai.

Reference Books

1. Arumugam.S, and Issac. A.T., (2011), Theory of Equation, New Gamma Publications house, Chennai,
2. Vittal .P.R and Malini (2009) Algebra Analytical Gemometry and

Trigonomentry Classical Algebra , Margham Publications. Chennai,
3. Venkataraman.M. K, (2013), Engineering mathematics, Volume II, National Publishing company, Chennai

E-resources:

- http://ndl.iitkgp.ac.in
- http://ocw.mit.edu
- http://mathforum.org
- https://nptel.ac.in/course.html

Course Outcome

At the end of the course, students would be able to:

CO 1	Find the roots of an equation using various technique
CO 2	Apply various method to solve reciprocal equation \& Find the approximation roots by Horner's method
CO 3	Acquire sound knowledge in finding nature and position of roots
CO 4	Develop problem solving skill in Cardon's method and Ferrari's method
CO 5	Acquire sound knowledge in inequalities

Mapping of Programme Specific Outcomes [PSOs] with Course Outcomes [Cos]												
	$\begin{array}{\|c} \text { PSO } \\ 1 \end{array}$	$\begin{array}{\|c} \hline \text { PSO } \\ 2 \\ \hline \end{array}$	$\begin{gathered} \text { PSO } \\ 3 \end{gathered}$	$\begin{gathered} \text { PSO } \\ 4 \end{gathered}$	$\begin{array}{\|c} \hline \text { PSO } \\ 5 \\ \hline \end{array}$	$\begin{gathered} \hline \text { PSO } \\ 6 \end{gathered}$	$\begin{gathered} \hline \text { PSO } \\ 7 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline \text { PSO } \\ 8 \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { PSO } \\ 9 \end{array}$	$\begin{array}{\|c\|} \hline \text { PSO } \\ 10 \\ \hline \end{array}$	$\begin{gathered} \hline \text { PSO } \\ 11 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { PSO } \\ 12 \\ \hline \end{gathered}$
$\begin{gathered} \hline \mathrm{CO} \\ 1 \end{gathered}$	3	2	1	2	1	2	2	1	1	1	1	1
$\begin{gathered} \mathrm{CO} \\ 2 \end{gathered}$	3	1	2	1	1	2	2	1	1	1	1	1
$\begin{gathered} \mathrm{CO} \\ 3 \end{gathered}$	3	2	1	3	1	2	2	1	1	1	1	1
$\begin{gathered} \mathrm{CO} \\ 4 \end{gathered}$	3	1	2	2	1	1	2	1	1	1	1	1
CO 5	3	1	3	2	1	2	3	1	1	1	1	1

1-Low 2-Moderate
3-High
Articulation Mapping - K Levels with Course Outcomes (COs)

Units	Cos	K - Level	Section A		Section B	Section C
			MCQs		Either/Or Choice	Open choice
			No. of Question s	K-Level	No. of Questions	No. of Questions
1	CO1	Up to K3	2	K1 \& K2	2(K3\&K3)	1(K2)
2	CO2	Up to K3	2	K1 \& K2	2(K2\&K2)	1(K3)
3	CO3	Up to K3	2	K1 \& K2	2(K2\&K2)	1(K3)
4	CO4	Up to K3	2	K1 \& K2	2(K3\&K3)	1(K3)
5	CO5	Up to K3	2	K1 \& K2	2(K2\&K2)	1(K3)
No of Questions to be asked			10		10	5
No of Questions to be answered			10		5	3
Marks for each Question			1		4	10
Total Marks for each Section			10		20	30

K1 - Remembering and recalling facts with specific answers
K2 - Basic understanding of facts and stating main ideas with general answers
K3 - Application oriented - Solving problems

Distribution of Section -wise Marks with K Levels

	Section	Section B K Levels (No Choice)	Section C or)	Sither/ or)	Total Marks	\% of Marks without Choice
K1	5	-	-	5	5	Consolidate d (Rounded off)
K2	5	24	10	39	39	39
K3	-	16	40	56	56	56
Total Marks	10	40	50	100		100%

Lesson Plan

Unit	Description	Hours	Mode
I	Theory of Equations, Reminder Theorem	2	Lecture ,Chal k \& Talk
	Fundamental theorem of algebra	1	Chalk \& Talk
	Symmetric function of roots	2	Chalk \& Talk
	Sum of the powers of the roots of an equationNewton's theorem on sum of the powers of the roots	4	Chalk \& Talk
	Transformation of equations, Roots with signs changed, Roots multiplied by the given number	3	Chalk \& Talk
II	Reciprocal equation	2	Chalk \& Talk
	To increase or decrease the roots by given quantity	2	Chalk \& Talk
	Horner's method	4	Chalk \& Talk
	Removal of terms	4	Chalk \& Talk
III	Transformation in general	2	Chalk \& Talk
	Nature and position of roots, Descarte's rule	2	Chalk \& Talk
	Roll's theorem	2	Chalk \& Talk
	Multiple roots	2	Chalk \& Talk
	Solutions of numerical equations, Integral roots	1	Chalk \& Talk
	Newton's method of divisors	3	Chalk \& Talk
IV	Sturm's Theorem, Sturm's function	4	Lecture, Chalk \& Talk
	Solution of cubic equation, Cardon's method	4	Chalk \& Talk
	Bi-quadratic equation, Ferrari’s method	4	Chalk \& Talk
V	Inequalities - Triangular inequalities	2	Chalk \& Talk
	Arithmetic, Geometric and Harmonic mean	4	Chalk \& Talk
	Cauchy Schwarz inequalities	2	Chalk \& Talk
	Wierstrass inequalities, simple problems	4	Chalk \& Talk

Course Designed by, Mrs. N. Sakunthala, Dr. S. Ramachandran, Dr. P.Pandiammal,

Programme	B.A/B/Sc/B.Com	Programme Code	UMA
Course Code	20UMAN11	Number of Hours/ Cycle	2
Semester	I	Max. Mark	50
Part	IV	Credit	2
Non Major Elective Course I			
Course Title	Fundamentals of Mathematics		
Cognitive level Up to K3			

Preamble:
The aim of this course is to introduce the basic concepts in mathematics which are relevant for students of humanities, arts and science the course deals with matrices, indices and surds, Differential calculus, simple interest, set language.

Unit I

6 Hours
Theory of Matrices -types of matrices -operations on them - Addition, Multiplication of two matrices.

Unit II

6 Hours
Theory of indices, properties-simple problems -theory of Surds - propertiessimplification -simple problems.

Unit III

6 Hours

Differential calculus -differentiating addition subtraction of two functions product rule - (Simple problems)

Unit IV

6 Hours
Simple Interest - Compound Interest - Growth - Depreciation of investment simple problems.
Unit V
6 Hours
Set Language- Theory of sets - Venn diagrams - Demorgan 's laws-cardinality power set-simple problems.

Pedagogy

Class Room lectures, ICT, Participatory method of teaching, Group discussion and Quiz

Text Books

1. Manoharan .M., Elango.C and Eswaran K.L, (2007), Business mathematics, Paramount publications - Bodi

Reference Books

1. Vittal.R.R .,(2014), Business Mathematics, Maragam Publications, Chennai.
2. Balakrishnan.R, (2010), Quantitative Aptitude, Pavai Publications, Chennai.
3. Ranganathan.C, (2003),Business Mathematics, Himalayan publication, Chennai.

E-Resources:

- http://ndl.iitkgp.ac.in
- http://ocw.mit.edu
- http://mathforum.org
- https://nptel.ac.in/course.html
- https://www.economicsdiscussion.net/price/index-number/index-numberscharacteristics formula-examples-types-importance-and-limitations/31211

Course Outcomes

At the end of the course, students would be able to

CO 1	Recall the Concept of Matrices and learn to solve problems using its Operations
CO 2	Apply the properties of Surds, Indices to Solve the problems.
CO 3	Extend the knowledge from calculation to calculus, and summarize the rules of differentiation
CO 4	Calculate simple interest and compound interest and understand about growth and Depreciation
CO 5	Define set and apply the venn diagram to solve real life problem

Articulation Mapping - K Levels with Course Outcomes (COs)

Units	Cos	K - Level	Section A		Section B
			Either/Or Choice		Open Choice
		No. of Questions	K-Level	No. of Questions	
1	CO1	Up to K3	2	(K1 \& K1)	$1(\mathrm{~K} 3)$
2	CO2	Up to K3	2	(K2 \& K2)	$1(\mathrm{~K} 3)$
3	CO3	Up to K3	2	(K2 \& K2)	$1(\mathrm{~K} 3)$
4	CO4	Up to K3	2	(K2 \& K2)	$1(\mathrm{~K} 3)$
5	CO5	Up to K3	2	(K2 \& K2)	$1(\mathrm{~K} 3)$
No of Questions to be asked	10		5		
No of Questions to be answered	5		3		
Marks for each Question					3
Total Marks for each Section	15		5		

K1-Remembering and recalling facts with specific answers
K2-Basic understanding of facts and stating main ideas with general answers
K3-Application oriented-Solving problems

Distribution of Section-wise Marks and K Levels

K Levels	Section A (Either/Or Choice)	Section B (Open choice)	Total Marks	\%of Marks without choice	Consolidated (Rounded off)
K1	6	-	6	10.91%	11%
K2	24	-	24	43.64%	44%
K3	-	25	25	45.45%	45%
Total Marks	30	25	55	100%	100%

Lesson Plan

\left.| Unit | Description | Hours | Mode |
| :---: | :--- | :---: | :---: |
| I | Matrix: Introduction | 1 | |
| | | | |
| | | | |$\right)$

Course Designed by: Dr. S. Ramachandran, Dr. J. Kaligarani

Programme	B.Sc.(Mathematics)	Programme Code	UMA
Course Code	20UMAC21	No. of Hrs per cycle	4
Semester	II	Max. Marks	100
Part	III	Credit	3
Core Course III			
Course Title	Integral Calculus		
Cognitive level Up to K3			
Preamble:			

This course is offered for the students to provide a strong foundation on the concepts and Various techniques of integration, beta and gamma functions, Fourier series and to develop the skill of problem solving

Unit I
 12 Hours

Integration by parts- Reduction formulae for $x^{n} e^{a x}, e^{a x} \operatorname{cosbx}, x^{m}(\log x)^{n}$, $x^{n} \cos a x, \sin ^{n} x, \cos ^{n} x, \sin ^{m} x \cos ^{n} x, \tan ^{n} x, \cot ^{n} x, \sec ^{n} x, \operatorname{cosec}^{n} x$-Problems-Geometric meaning of integration as summation

Unit II

12 Hours
The Definite integral-Riemann integration- Riemann's definition of integrable function - Darboux's Theorem -Necessary and sufficient condition for integrabilityIntegrable function-properties of definite integral-The first theorem of Mean valueFundamental theorem of integral calculus
UnitIII

12 Hours

Definitions of Beta and Gamma functions - Properties of Beta functions-Relation between Beta and Gamma functions- Recurrence formula for Gamma functionApplications of Gamma functions to multiple integrals

Unit IV

12 Hours

Multiple integrals: Definitions of double integral-Evaluation of double integralsChange the order in double integrals- Double integral in polar coordinates- triple integralsChange of variables in double and triple integrals. Transformation from Cartesian to polar coordinates- Cartesian to Spherical polar coordinates

Unit V

12 Hours
Fourier series - definition - even and odd functions - expanding $f(x)$ as Fourier series in $(-\pi, \pi),(0,2 \pi)$ - half range series - development of cosine and sine series - change of interval - expanding $f(x)$ as Fourier series in $(-1, l),(0,2 l)$ and $(0, l)$

Pedagogy

Class Room lectures, ICT, Participatory method of teaching, Group discussion and Quiz Text Book

1. Manickavasagam Pillai .T.K. \&Narayanan.S , (2011), Calculus, Volumes II \& III. Publishers:
S.Viswanathan, Chennai

Reference Books

1. Arumugam.S, \& Thanga Pandi Isaac, (2014), Calculus, New Gamma Publishing House, Chennai
2. Dr.Grewal.B.S, (2012), Higher Engineering Mathematics. Khanna Publishers Edition, New Delhi
3. Dr.G. Balaji (2015), "Transform and Partial Differential Equation", Balaji Publications, Chennai.

E-resources

IIT Lectures, UGC Gyan Dharshan videos

- http://ndl.iitkgp.ac.in
- http://ocw.mit.edu
- http://mathforum.org
- https://nptel.ac.in/course.html

Course Outcomes

After completion of this course, the students will be able to:

CO 1	Understand definite and infinite integration by recalling the concept of integration and develop the skill to learn reduction formulae
CO 2	Summarize about Riemann integral, Geometrical interpretation of Riemann integral and its properties
CO 3	Learn to compare and contrast Beta and Gamma functions
CO 4	Classify double and triple integration and learn about transformation of Cartesian to polar coordinates and transformation of Cartesian to Spherical coordinates
CO 5	Describe the expansion of Fourier series of even or odd functions

Mapping of Programme specific outcomes with Course Outcomes

| | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 | PSO7 | PSO8 | PSO9 | PSO10 | PSO11 | PSO12 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CO1 | 3 | 3 | 1 | 2 | 2 | 3 | 2 | 1 | 1 | 1 | 1 | 2 |
| CO2 | 3 | 2 | 2 | 2 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 |
| CO3 | 3 | 3 | 2 | 2 | 1 | 3 | 2 | 1 | 1 | 1 | 1 | 1 |
| CO4 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 2 |
| CO5 | 3 | 3 | 2 | 3 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 2 |

Articulation Mapping-K Levels with Course Outcomes (COs)

Units	Cos	K-Level	Section A		Section B	Section C
			MCQs		Either/or Choice	Open Choice
			No. of Questions	K-Level	No. of Questions	No. of Questions
1	CO1	Up to K3	2	K1 \& K2	2(K2\&K2)	1(K3)
2	CO2	Up to K3	2	K1 \& K2	2(K2\&K2)	1(K3)
3	CO3	Up to K3	2	K1 \& K2	2(K2\&K2)	1(K3)
4	CO4	Up to K3	2	K1 \& K2	2(K2\&K2)	1(K3)
5	CO5	Up to K3	2	K1 \& K2	2(K2\&K2)	1(K3)
No. of Questions to be asked			10		10	5
No. of Questions to be answered			10		5	3
Marks for each Question			1		4	10
Total Marks for each Section			10		20	30

K1-Remembering and recalling facts with specific answers
K2-Basic understanding of facts and stating main ideas with general answers
K3-Application oriented-Solving problems

Distribution of Section-wise Marks and K Levels

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (Open Choice)	Total Marks	\% of Marks without choice	Consolidated (Rounded off)
K1	5	-	-	5	5%	5%
K2	5	40	-	45	45%	45%
K3	--	-	50	50	50%	50%
Total Marks	10	40	50	100	100%	100%

Lesson Plan

Unit	Description	Hours	Mode
I	Integration by parts	1	Lecture (Chalk \&Talk)PPTICTGroup discussionQuiz
	Reduction formulae $\mathrm{x}^{\mathrm{n}} \mathrm{e}^{\mathrm{ax}}, \mathrm{x}^{\mathrm{n}}$ cosax, $\mathrm{e}^{\mathrm{ax}} \cos b x, \mathrm{x}^{\mathrm{m}}(\log \mathrm{x})^{\mathrm{n}}$	4	
	$\sin ^{m} x, \cos ^{n} x, \tan ^{n} x, \cot ^{n} x, \sec ^{n} x, \operatorname{cosec}^{n} x$	5	
	Integration as summation	2	
II	Definition of Riemann Integral	1	Lecture (Chalk \& Talk) ICT
	Darboux's Theorem	2	
	Necessary and sufficient condition	2	
	properties of definite integral	2	
	The first theorem of Mean value	2	
	Fundamental theorem of integral calculus	3	
III	Definitions of Beta and Gamma functions	2	Lecture (Chalk \& Talk) PPT ICT
	Properties of Beta functions	3	
	Recurrence formula for Gamma function	3	
	Applications of Gamma functions to multiple integrals	4	
IV	Definitions of double and triple integrals	1	Lecture (Chalk \& Talk) PPT
	Evaluation of double integrals	2	
	Change the order in double integrals	2	
	Evaluation of triple integrals	2	
	Change of variables in double and triple integrals	2	ICT Group discussion
	Transformation from Cartesian to polar, Cartesian to Spherical	3	Quiz
V	Definition of Fourier series	1	 Talk) PPT ICT
	even and odd functions	2	
	$\begin{aligned} & \text { Expanding } \mathrm{f}(\mathrm{x}) \text { as Fourier series in }(-\pi, \pi) \text {, } \\ & (0,2 \pi) \end{aligned}$	3	
	Half range series	2	
	change of interval	4	

Course Designed by, Prof. N. Sakunthala, Dr. J. Kaligarani

Programme	B.Sc.(Mathematics)	Programme Code	UMA
Course Code	20UMAC22	No. of Hrs per cycle	4
Semester	II	Max. Marks	100
Part	III	Credit	3
Core Course IV			
Course Title	Sequences and Series		
Cognitive level: Up to K3			

Preamble

This course enable the students to understand the basic concepts in sequence and series . Types and properties of sequence and series of real number have been demonstrated in details
Unit - I
12 Hours
Sequences - Bounded - Monotonic - Convergent - Divergent and Oscillating sequences Algebra of limits - Problems.

Unit - II

12 Hours
Behaviour of monotonic sequences - problems - Cauchy’s first limit theorem Cesaro’s Theorem Problems

Unit - III

12 Hours
Cauchy's second limit theorem - Subsequence - Limit points - Cauchy sequences - the upper and lower limit of a sequence - Problems

Unit - IV

12 Hours
Series of positive terms - Infinite series - Theorems - Cauchy's general principle of convergence - Comparison test - Harmonic series.- Kummer's test Unit - V

12 Hours
D'Alembert's ratio test - Raabe's test - De Morgan and Bertrand's test - Gauss's test - Applications to simple problems - Cauchy's root test - Cauchy's condensation test -Alternating series - Absolute convergence .

Pedagogy

Class Room lectures, ICT, Participatory method of teaching, Group discussion and Quiz

Text Book

1. Arumugam. S \& ThangaPandi Isaac, (2006), Sequences and Series, New Gamma Publishing House, Palayamkottai.

Reference Books

1. Manicavachagampillai .T.K, Natarajan .T and Ganapathy. K.S., (2008), Algebra vol I, S.viswanathan , Pvt. Ltd., Chennai.
2. ChandraSekaraRao K.and.Narayanan,K.S, (2008), Real Analysis, Volume I S.ViswanathanPvt.Ltd, Chennai.
3. Balaji. G, (2013), Engineering Mathematics - I, G.Balaji Publishers, Chennai.
4. Bali.N.P, Manish Goyal,(2005), Engineering Mathematics, University Science Press, Delhi.

E-Resources:

- IIT Lectures, UGC Gyan Dharshan videos
- http://ndl.iitkgp.ac.in
- http://ocw.mit.edu
- http://mathforum.org
- https://nptel.ac.in/course.html

Course outcomes:

At the end of the course, students would be able to:

CO 1	Demonstrate completely about the sequence and series and their various types
CO 2	I Illustrate and find limit superior and limit inferior properties of real numbers and
$\mathbf{C O} 3$	Determine the convergent of real sequences

Mapping of Programme specific outcomes with Course Outcomes

	PSO1	PSO	PSO	PSO	PSO5	PSO6	PSO	PSO	PSO	PSO10	PSO11	PSO1
CO1	2	2	1	3	1	1	1	1	1	1	1	1
CO2	3	2	1	3	1	1	1	1	1	1	1	1
CO3	3	2	1	3	1	1	1	1	1	1	1	1
CO4	2	2	1	3	1	2	1	1	1	1	1	1
CO5	3	3	1	2	1	2	1	1	1	1	1	1

1-Low 2-Moderate 3-High
Articulation Mapping-K Levels with Course Outcomes (COs)

Units	Cos	K - Level	Section A		Section B	Section C
			MCQs		Either/Or Choice	Open choice
			No. of Question S	K-Level	No. of Questions	No. of Questions
1	CO1	Up to K2	2	K1 \& K2	2(K2\&K2)	1(K2)
2	CO2	Up to K2	2	K1 \& K2	2(K2\&K2)	1(K2)
3	CO3	Up to K3	2	K1 \& K2	2(K3\&K3)	1(K3)
4	CO4	Up to K2	2	K1 \& K2	2(K2\&K2)	1(K2)
5	CO5	Up to K3	2	K1 \& K2	2(K3\&K3)	1(K3)
No of Questions to be asked			10		10	5
No of Questions to be answered			10		5	3
Marks for each Question			1		4	10
Total Marks for each Section			10		20	30

K1-Remembering and recalling facts with specific answers.
K2-Basic understanding of facts and stating main ideas with general answers
K3-Application oriented-Solving problems

Distribution of Section-wise Marks and K Levels

K Levels	Section A (No of Choice)	Section B (Either/or)	Section C (Open choice)	Total Marks	\% of Marks without choice	Consolidate d(Rounded off)
K1	5	-	-	5	5%	5%
K2	5	32	30	67	67%	67%
K3	-	8	20	28	28%	28%
Total Marks	$\mathbf{1 0}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{1 0 0}$	$\mathbf{1 0 0 \%}$	$\mathbf{1 0 0 \%}$

Lesson Plan

Unit	Description	Hours	Mode
I	Sequences	2	
	Bounded and Monotonic Sequences	2	Chalk \& Talk
	Convergent, divergent \& oscillating	3	Chalk \& Talk
	Algebra of limits \& Problems	5	Chalk \& Talk
II	Behaviour of Monotonic sequences \&	4	Chalk \& Talk
	Cauchy's first limit theorem	4	Chalk \& Talk
	Cesaro;s Theorem \& Problem	4	Chalk \& Talk
	Cauchy's second limit theorem	3	Chalk \& Talk
	Subsequence	2	Chalk \& Talk
	Limit Points	3	Chalk \& Talk
	Cauchy Sequences \& Problem	4	Chalk \& Talk
	Series of positive terms - Infinite series	2	
	Theorem 1 \& 2	Cauchy's general principle of convergence	3
	Comparison Test	2	Chalk \& Talk
	Harmonic Series	2	Chalk \& Talk
	Kummer's test	D'Alembert's ratio test \& Raabe's test	2
Chalk \& Talk			
	De Morgan and Bertrand's test	3	Chalk \& Talk
	Gauss's text	Applications to simple problems	1
	Cauchy's root test	2	Chalk \& Talk
	Cauchy's condensation test	2	Chalk \& Talk
	Alternating series	1	Chalk \& Talk
	Absolute convergence	1	Chalk \& Talk
	Dale	1	Chalk \& Talk

Course Designed by, Prof. N. Sakunthala

Programme	 B.Sc.	Programme Code	UMA
Course Code	20UMAN21	No. of Hrs per cycle	2
Semester	II	Max. Marks	50
Part	IV	Credit	2
Non Major Elective Course II			
Course Title	Statistical Methods		
Cognitive Level	Up to K3		

Preamble

The aim of this course is to enable the student to acquire basic tools in statistical methods for solving real life problems in business, industry, agriculture and medicine. This course includes measure of central tendency, measure of dispersion, method of least square, interpolation and curve fitting.

Unit I

6 Hours
Measures of Central Tendencies - Introduction- Arithmetic Mean - Partition Values (Median, Quartiles, Deciles and Percentiles)

Unit II
 6 Hours

Measures of Dispersion - Introduction- Range - Quartile Deviation - Mean
Deviation - Standard Deviation.

Unit III

6 Hours
Index numbers- Calculation of indices using simple aggregate method and average of price relatives method - Weighted index numbers - Laspeyre's, paasche's, Fisher's, Bowley's and Edge-worth's index numbers.

Unit IV

6 Hours
Curve fitting - Introduction- Method of least squares - linear - polynomial exponential.

Unit V

6 Hours
Interpolation - Finite Differences - Newton’s Forward Interpolation formula Newton's
Backward Interpolation Formula - Lagrange`s Formula.

Pedagogy

Chalk and talk, Class Room lectures, ICT, Participatory method of teaching and Group discussion

Text Book

1. Arumugam.S, (2009), Statistics, New Gamma Publishing House, Palayamkottai.

Reference Books

1. Saxena.H.C, Kapur.J.N, (2009), Mathematical Statistics, S.Chand \& Company Ltd, New

Delhi.
2. Pillai.R.S.N, Bagavathi.V, (2008), Statistics, S.Chand \& Company Ltd, New Delhi.
3. Vittal.P.R., (2013), Business Mathematics and Statistics, Margham Publications, Chennai.
4. Gupta. S.C and Kapoor.V.K,(2001)Mathematical Statistics, Sultan Chand and Sons NewDelhi.
5. Manmohan Gupta, (2001),Statistics, Sultan Chand and Sons,NewDelhi.

E-references:

- http://ndl.iitkgp.ac.in
- http://ocw.mit.edu
- http://mathforum.org
- https://nptel.ac.in/course.html
- https://www.economicsdiscussion.net/price/index-number/index-numbers-
characteristics- formula- examples-types-importance-and-limitations/31211

Course Outcomes

At the end of the course, students would be able to:

CO 1	Define the measures of Central Tendencies and calculate Arithmetic Mean, Median, Quartile Deciles and Percentile
CO 2	Find range, Quartile deviation, Mean deviation and standard deviation
CO 3	Calculate simple index numbers and apply weighted index numbers
CO 4	Applying principle of least square to fit linear, Polynomial and exponential curve
CO 5	Discuss and demonstrate the concept of interpolation, Newton's forward and backward and legrange's method

On the successful completion of the course students will be able to

- Students in introductory-level Statistics courses will know fundamental statistical concepts and some of their basic applications in science and society.
- Students shall know how to organize, manage, and present data. Students shall be able to effectively communicate results of statistical analysis.
- The students will gain basic knowledge of the application of mathematics and statistics to business disciplines get the ability to analyze and interpret data to provide meaningful information to assist in making management decisions.
- Gain the knowledge on presentation and tabulation of data, the methods of collecting data and summarizing the data using central tendency
- Acquire the knowledge on various measures of dispersion and the method of measuring it
- Acquire the knowledge of measuring the fluctuation or changes in price and quantity of goods and products using various index numbers.

Articulation Mapping - K Levels with Course Outcomes (COs)

Units	Cos	Up to K Level	Section A		Section B
			Either/Or Choice Questions		K-Level
Open Choice					
1	CO1	K2	2	K2 \& K2	1(K2) Questions
2	CO2	K3	2	K2 \& K2	$1(\mathrm{~K} 3)$
3	CO3	K3	2	K2 \& K2	$1(\mathrm{~K} 3)$
4	CO4	K3	2	K2 \& K2	$1(\mathrm{~K} 3)$
5	CO5	K3	2	K2 \& K2	$1(\mathrm{~K} 3)$
No of Questions to be asked	10		5		
No of Questions to be answered	5		3		
Marks for each Question					3
Total Marks for each Section	15		5		

K1 - Remembering and recalling facts with specific answers
K2 - Basic understanding of facts and stating main ideas with general answers

Distribution of Section -wise Marks with K Levels

K Levels	Section A (No Choice)	Section B (Either/or)	Total Marks	\%of of Marks without Choice	Consolidated (Rounded off)
K1		-			-
K2	30	5	35	63.63	64%
K3	-	20	20	36.36	36%
Total Marks	30	25	55		100%

Lesson Plan

Unit	Description	Hours	Mode
I	Central Tendencies: Introduction	1	Lecture ,Chalk \& Talk
	Arithmetic Mean	2	Chalk \& Talk
	Median	2	Chalk \& Talk
	Quartiles, Deciles and Percentiles	1	Chalk \& Talk
II	Measures of Dispersion : Introduction	1	Chalk \& Talk
	Range, Quartile Deviation, Mean Deviation	2	Chalk \& Talk
	Standard Deviation	3	Chalk \& Talk
III	Index numbers: Calculation of indices using simple aggregate method	1	Chalk \& Talk
	average of price relatives method	3	PPT
	Weighted index numbers: Laspeyre‘s, paasche‘s, Fisher‘s, Bowley's and Edgeworth's index numbers	2	Chalk \& Talk
IV	Curve fitting : Introduction	1	Lecture, Chalk \& Talk
	Method of least squares: linear	2	Chalk \& Talk
	Method of least squares: polynomial	1	Chalk \& Talk
	Method of least squares: exponential	2	Chalk \& Talk
V	Interpolation: Finite Differences.	2	Chalk \& Talk
	Newton's Forward Interpolation formula and Newton's Backward Interpolation Formula .	2	Chalk \& Talk
	Lagrange`s Formula.	2	Chalk \& Talk

Course Designed By, Dr. C. Subramani

Allied Courses Offered to B.Sc Physics and Chemistry

Programme	 Chemistry)	Programme Code	UMA
Course Code	20UMAA11	No. of Hrs per cycle	6
Semester	I	Max. Marks	100
Part	III	Credit	5
Allied Course I			
Course Title	Allied Mathematics - I		
Cognitive level - Up to K3			

Preamble

This course deal with the application of mathematics like calculus, functions , complex numbers which are used to improve the knowledge used in various discipline.

Unit I

18 Hours
Algebra :Summation of series- Binomial, Exponential and logarithmic series (only problems).
Unit II
18 Hours
Theory of equations-an nth degree equation has exactly n rootsRelation between the roots and the Coefficients - Reciprocal equationTransformation of equation- Newton and Horner's method of finding roots up to 2 decimals.

Unit III

Elements of Differential calculus (not for examination)-Radius of curvature- centre of curvature and circle of curvature.

Unit IV

18 Hours
Elements of Integral calculus (not for examination)-Evaluation of definite integrals- Integration by parts- Reduction formula $\sin ^{n} x, \cos ^{n} x$, $\tan ^{n} \mathrm{x}, \sec ^{\mathrm{n}} \mathrm{X}, \cot ^{\mathrm{n}} \mathrm{X}, \operatorname{cosec}^{\mathrm{n}} \mathrm{X}, \sin ^{\mathrm{m}} \mathrm{x} \cos ^{\mathrm{n}} \mathrm{x}$ and simple problems.

Unit V

18 Hours
De moivre's theorem- Hyperbolic functions-Logarithms of complex numbers.

Pedagogy

Class Room lectures, ICT , Participatory method of teaching, Group discussion and Quiz
Text Book

1. Arumugam. S, June, (2014), "ANCILLARY MATHEMATICS paper-I", New Gamma Publications, Palayamkottai.

Reference Books

1. Manickavasagam Pilai. T.K \& Narayanan. S, (2015), "Calculus, Volumes I \& II", Publishers:S.Viswanathan.
2. Arumugam.S, (2011), ANCILLARY MATHEMATICS vol II, New Gamma Publications, Palayamkottai.
3. Manickavasagam pillai.T.K \& Narayanan.S,(2011),"Algebra Volume I and Trigonometry", S.Viswanathan Publications.

E-Resources:

- http://ndl.iitkgp.ac.in
- http://ocw.mit.edu
- http://mathforum.org
- https://nptel.ac.in/course.html

Course Outcomes

At the end of the course, students would be able to:

CO 1	Recall binomial series and apply exponential and logarithmic to find summation of series
CO 2	Relate the importance of relation between roots and coefficients and apply various methods of obtaining roots
CO 3	Solve problems in radius, centre and circle of curvature
CO 4	Apply the concept of integrals and learn the reduction formula
CO 5	Relate trigonometric functions and hyperbolic functions and learn logarithm of complex number

For Physics: Mapping of CO with PO

	$\begin{gathered} \hline \text { PSO } \\ 1 \end{gathered}$	$\begin{array}{\|c} \hline \text { PSO } \\ 2 \end{array}$	$\begin{aligned} & \hline \text { PSO } \\ & 3 \end{aligned}$	$\begin{gathered} \text { PSO } \\ 4 \end{gathered}$	$\begin{gathered} \text { PSO } \\ 5 \end{gathered}$	$\begin{aligned} & \text { PSO } \\ & 6 \end{aligned}$	$\begin{aligned} & \text { PSO } \\ & 7 \end{aligned}$	$\begin{gathered} \hline \text { PSO } \\ 8 \end{gathered}$	$\begin{array}{\|c} \hline \text { PSO } \\ 9 \end{array}$	$\begin{gathered} \text { PS1 } \\ 0 \end{gathered}$	$\begin{array}{\|c} \hline \text { PS1 } \\ \hline 1 \end{array}$	$\begin{aligned} & \hline \text { PS1 } \\ & 2 \end{aligned}$
CO	1	2	3	1	2	1	1	1	3	1	1	1
$\begin{aligned} & \text { CO } \\ & 2 \end{aligned}$	1	1	3	1	1	1	1	1	3	1	1	1
CO	2	1	3	1	1	1	1	1	3	1	1	1
$\begin{aligned} & \mathrm{CO} \\ & 4 \end{aligned}$	1	1	3	1	2	1	1	1	3	1	1	2
$\begin{aligned} & \text { CO } \\ & 5 \end{aligned}$	2	1	3	1	1	1	1	1	3	1	1	1

Strong=3, Medium=2, Low=1
For Chemistry: Mapping of CO with PO

	PSO $\mathbf{1}$	PSO $\mathbf{2}$	PSO $\mathbf{3}$	PSO $\mathbf{4}$	PSO $\mathbf{5}$	PSO $\mathbf{6}$	PSO $\mathbf{7}$	PSO $\mathbf{8}$	PSO $\mathbf{9}$	PS1 $\mathbf{0}$	PS1 $\mathbf{1}$	PS1 $\mathbf{2}$
$\mathbf{C O}$ $\mathbf{1}$	1	3	1	1	1	3	1	1	1	1	1	2
$\mathbf{C O}$ $\mathbf{2}$	1	2	1	1	1	3	1	1	1	1	1	1
$\mathbf{C O}$ $\mathbf{3}$	1	3	1	1	2	2	1	1	1	1	1	1
$\mathbf{C O}$ $\mathbf{4}$	1	2	1	1	1	2	1	1	1	1	1	1
$\mathbf{C O}$ $\mathbf{5}$	1	2	1	1	2	1	1	1	1	1	1	1

Strong=3, \quad Medium=2, \quad Low $=1$

Articulation Mapping-K Levels with Course Outcomes(COs)

Units	Cos	K - Level	Section A		Section B	Section C
			MCQs		Either/Or Choice	Open choice
			No. of Question s	K-Level	No. of Questions	No. of Questions
1	CO	Up to K3	2	K1 \& K1	2(K2\&K2)	1(K3)
2	$\begin{gathered} \hline \mathrm{CO} \\ 2 \end{gathered}$	Up to K3	2	K1 \& K1	2(K2\&K2)	1(K3)
3	$\begin{gathered} \mathrm{CO} \\ 3 \end{gathered}$	Up to K3	2	K1 \& K1	2(K2\&K2)	1(K3)
4	$\begin{gathered} \mathrm{CO} \\ 4 \end{gathered}$	Up to K3	2	K1 \& K2	2(K2\&K2)	1(K3)
5	$\begin{gathered} \hline \mathrm{CO} \\ 5 \end{gathered}$	Up to K3	2	K1 \& K2	2(K2\&K2)	1(K3)
No of Questions to be asked			10		10	5
No of Questions to be answered			10		5	3
Marks for each Question			1		4	10
Total Marks for each Section			10		20	30

K1-Remembering and recalling facts with specific answers
K2-Basic understanding of facts and stating main ideas with general answers
K3-Application oriented-Solving problems
Distribution of Section-wise Marks and K Levels

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (Open choice)	Total Marks	\% of Marks without choice	Consolidated (Rounded off)
K1	8	-	-	8	8%	8%
K2	2	40	-	42	42%	42%
K3	-	-	50	50	50%	50%
Total Marks	10	40	50	100	100%	100%

Unit	Description	Hours	Mode
I	Summation of series :Introduction	3	Lecture (Chalk \& Talk)PPTICTGroup discussionQuiz
	Binomial	5	
	Exponential	5	
	Logarithmic	5	
II	Theory of Equation: Introduction	3	Lecture (Chalk \& Talk)PPTICT
	Relation between the roots and the Coefficients	5	
	Reciprocal equation	2	
	Transformation of equation	3	
	Newton and Horner's method	5	
III	Differential calculus: Introduction	4	Lecture (Chalk \& Talk)ICT
	Radius of curvature	6	
	centre of curvature	4	
	circle of curvature	4	
IV	Integral calculus	3	Lecture (Chalk \& Talk) PPT ICT Group discussion Quiz
	Evaluation of definite integrals	4	
	Integration by parts	2	
	Reduction formula	5	
	problems	4	
V	Demoivre's theorem	6	$\begin{gathered} \text { Lecture (Chalk \& Talk) } \\ \text { PPT } \\ \text { ICT } \end{gathered}$
	Hyperbolic functions	6	
	Logarithms of complex numbers	6	

Course Designed by Dr. J. Kaligarani

Programme	 Chemistry)	Programme Code	UMA
Course Code	20UMAA21	No. of Hrs per cycle	6
Semester	II	Max. Marks	100
Part	III	Credit	5
Allied Course II			
Course Title			
Cognitived Mathematics - II			

Preamble

This course develops among the students mathematical skills required to study physics and chemistry. This course deals with vector, solution of linear equation, eigen values, eigen vectors and Cayley-Hamilton theorem.
Unit-I
18 Hours
Vector differentiation -velocity-Acceleration- vector differential operator-gradient- Divergence and Curl and their simple properties- directional derivativessolenoidal - Irrotational vectors

Unit-II

18 Hours
Vector - integration- Gauss, Green and Stokes theorems(without proofs)Simple applications.

Unit-III

18 Hours
Differential Equations- Equations of first order and first degree- Exact differential equations-integrating factors-Linear equations.

Unit-IV

18 Hours
Matrices-Types of Matrices - Rank of a matrix - consistency of system of linear equations-simple problems

Unit-V

18 Hours
Cayley Hamilton theorem (without proof)-Inverse of a Matrix and higher powers

- Eigen values and Eigen vectors.

Course Outcomes:

At the end of the course, students would be able to:

CO 1	Understand the concept of vector differential operators and Relate Solenoidal and irrotational.
CO 2	Find the solution of Line integral, volume integral and surface integral using greens, Gauss, Green and Stokes theorems
CO 3	Solve the Differential equation
CO 4	Classify the matrix and apply it to solve system of equations
CO 5	Explain the application of Cayley Hamilton theorem

Pedagogy

Class Room lectures, ICT , Participatory method of teaching, Group discussion and Quiz

Text Book

1. Arumugam.S,(2011), ANCILLARY MATHEMATICS Vol II, New Gamma Publications, Palayamkottai.

Reference Books

1. Manickavasagam Pillai.T.K.\&Narayanan.T, (2002), Analytical Geometry of Three Dimensions and VectorCalculus, Viswanathan Publishing Company, Chennai.
2. Manickavasagam Pillai.T.K.\&Narayanan.T,. (2001),Differential equations and its application,Viswanathan Publishing Company, Chennai
3. Arumugam. S, June, (2014), "ANCILLARY MATHEMATICS paper-III", New Gamma Publications, Palayamkottai.

E-Resources:

- http://ndl.iitkgp.ac.in
- http://ocw.mit.edu
- http://mathforum.org
- https://nptel.ac.in/course.html

For Physics: Mapping of CO with $\mathbf{P O}$

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PS10	PS11	PS1 2
CO 1	1	2	3	1	2	1	1	1	3	1	1	1
CO 2	1	1	3	1	1	1	1	1	3	1	1	1
CO 3	2	1	3	1	1	1	1	1	3	1	1	1
CO 4	1	1	3	1	2	1	1	1	3	1	1	2
CO 5	2	1	3	1	1	1	1	1	3	1	1	1

Strong=3, Medium=2, Low=1
For Chemistry: Mapping of CO with PO

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PS10	PS11	PS1 2
CO 1	1	3	1	1	1	3	1	1	1	1	1	2
CO 2	1	2	1	1	1	3	1	1	1	1	1	1
CO 3	1	3	1	1	2	2	1	1	1	1	1	1
CO 4	1	2	1	1	1	2	1	1	1	1	1	1
CO 5	1	2	1	1	2	1	1	1	1	1	1	1

Strong=3, Medium=2, Low=1
Articulation Mapping-K Levels with Course Outcomes(COs)

Units	Cos	K - Level	Section A		Section B	Section C
			MCQs		Either/Or Choice	Open choice
			No. of Question s	K-Level	No. of Questions	No. of Questions

1	CO1	Up to K2	2	K1 \& K2	2(K2\&K2)	$1(\mathrm{~K} 2)$
2	CO2	Up to K3	2	K1 \& K2	$2(\mathrm{~K} 3 \& \mathrm{~K} 3)$	$1(\mathrm{~K} 3)$
3	CO3	Up to K2	2	K1 \& K2	$2(\mathrm{~K} 2 \& \mathrm{~K} 2)$	$1(\mathrm{~K} 2)$
4	CO4	Up to K3	2	K1 \& K2	$2(\mathrm{~K} 3 \& \mathrm{~K} 3)$	1 (K3)
5	CO5	Up to K3	2	K1 \& K2	$2(\mathrm{~K} 2 \& \mathrm{~K} 2)$	1 (K3)
No of Questions to be asked	10		10	5		
No of Questions to be answered	10		5	3		
Marks for each Question Total Marks for each Section						

K1-Remembering and recalling facts with specific answers
K2-Basic understanding of facts and stating main ideas with general answers
K3-Application oriented-Solving problems
Distribution of Section-wise Marks and K Levels

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (Either/or)	Total Marks	\% of Marks without choice	Consolidated (Rounded off)
K1	5	-	-	5	5%	5
K2	5	24	20	49	49%	49
K3	-	16	30	46	46%	46
Total Marks	10	40	50	100	100%	100%

Lesson Plan

Unit	Description	Hours	Mode
I	Vector differentiation	2	 Talk) PPT ICT Group discussion Quiz
	Velocity, Acceleration	3	
	Vector differential operator, gradient Divergence and Curl	5	
	Directional derivatives	4	
	solenoidal, Irrotational vectors	4	
II	Introduction, Line integral	3	 Talk) PPT ICT
	Green's theorem and problem	5	
	Gauss theorem and problem	5	
	Stokes theorems and Problems	5	
III	Differential Equations: Introduction	4	Lecture (Chalk \& Talk) ICT
	Equations of first order and first degree	4	
	Exact differential equations	5	
	Linear equations	5	
IV	Matrix: Introduction	3	 Talk) PPT ICT Group discussion Quiz
	Types of Matrices	3	
	Rank of a matrix	6	
	consistency of system of linear equations	6	
V	Cayley Hamilton theorem	5	 Talk) PPT ICT
	Inverse of a Matrix and higher powers	4	
	Eigen values and Eigen vectors	9	

Course Designed by
Dr. J. Kaligarani

Programme	 IT), BCA	Programme Code	UMA
Course Code	20UMAA12	Number of Hours/Cycle	4
Semester	I	Max. Marks	100
Part	III	Credit	4
Allied Course - I			
Course Title	Discrete Mathematics		
Cognitive Skills	Up to K3		

Preamble

Discrete Mathematics introduces the mathematics of networks, social choice, and decision making and the course provides hands-on exploration of the relevancy of set theory, logic, basic principles of Boolean Algebra and basic Graph theory

Unit I

12 Hours

Set Theory\& Relations and Functions : Sets introduction - Notation and Description of sets - Subsets - Venn-Euler Diagrams - operation on sets - Properties of set operation - Relations and Functions - Cartesian Product of Two sets - Relations Representations of a Relation - Operations on Relations - Equivalence Relations Function definition and example.

Unit II

Hours

Logic \& Boolean algebra: TF Statements - Connectives - Well Formed (Statement) Formulae - Truth table of a formula - Tautology - Tautological implications and equivalence of formulae - Boolean algebra - Lattices

Unit III

14 Hours

Recurrence Relations \& Generating Functions: Recurrence - An Introduction Recurrence Relations - Solution of finite order homogeneous (Linear) relations - Solution of non - homogeneous relations (For all the theorems consider the statements without proofs) - Generating Functions

Unit IV

12 Hours

Graphs and sub graphs: Introduction - Definition and examples - Degrees - sub graphs - matrices Trees: Introduction - Characterization of trees. Some Applications: Shortest path problem.
Unit V
11 Hours

Matrix Algebra: Introduction - Matrix operation - Inverse of a square matrix Elementary operations and Rank of a matrix - Simultaneous Equations- Eigen values and Eigenvectors.

Pedagogy

Quiz, Assignments

Text Books

(v) Venkataraman.M.K, Sridharan.N and Chandrasekaran.N,"Discrete Mathematic", (2009) The National Publishing company.
(vi) Arumugam.S and Ramachandran.S, (2018) ,"Introduction to Graph Theory ", Scitech Publications (India) pvt Ltd.,

Reference Books

1. Alen Doerr and Kenneth Levesseur, , "Applied Discrete Structures for computer Science",
(2000) Galgotia Publications.
2. Veerarajan.T, "Discrete Mathematics and its Applications", (2014)Tata McGrawHill, Delhi.
3. Balaji.G, "Discrete Mathematics with Algorithms", (2015) G.Balaji Publishers.

E-Resources:

- https://nptel.ac.in/courses/111/107/111107058/
- https://nptel.ac.in/courses/106/106/106106094/
- https://www.youtube.com/watch?v=K73N9ES_8nI
- https://nptel.ac.in/courses/111/106/111106102/
- https://nptel.ac.in/courses/111/106/111106086/

Course Outcomes:

At the end of the course, students would be able to:

CO 1	To understand the basic concepts of set theory, Relations and functions
CO 2	Construct and classify logical sentence in terms of logical connectives, predicates
CO 3	Formulate and construct the Recurrence Relations, solving problems
CO 4	Acquire the knowledge graphs, subgraphs, trees and shortest path problem
CO 5	Recall basic matrix operations and solve problems using matrix theory

Mapping of Course Outcomes (COs) with Programme Specific Outcomes for B.Sc., (Computer Science)

	$\begin{gathered} \hline \text { PSO } \\ 1 \end{gathered}$	$\begin{array}{\|c} \hline \text { PSO } \\ 2 \end{array}$	$\begin{array}{\|c\|} \hline \text { PSO } \\ 3 \end{array}$	$\begin{array}{\|c} \hline \text { PSO } \\ 4 \end{array}$	$\begin{gathered} \text { PSO } \\ 5 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { PSO } \\ 6 \end{array}$	$\begin{gathered} \text { PSO } \\ 7 \end{gathered}$	$\begin{gathered} \text { PSO } \\ 8 \end{gathered}$	$\begin{gathered} \hline \text { PSO } \\ 9 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { PSO1 } \\ 0 \\ \hline \end{array}$	$\begin{gathered} \hline \text { PSO1 } \\ 1 \end{gathered}$	$\begin{gathered} \hline \text { PSO1 } \\ 2 \end{gathered}$
$\begin{gathered} \hline \mathrm{CO} \\ 1 \end{gathered}$	3	1	1	1	1	1	1	1	1	1	1	1
$\begin{gathered} \mathrm{CO} \\ 2 \end{gathered}$	3	1	1	1	1	2	1	1	1	1	1	1
$\begin{gathered} \hline \mathrm{CO} \\ 3 \end{gathered}$	3	2	1	1	1	1	1	1	1	1	1	1
$\begin{gathered} \mathrm{CO} \\ 4 \end{gathered}$	3	1	1	1	1	1	1	1	1	1	1	1
CO 5	3	1	1	1	1	2	1	1	1	1	1	1

Strong=3, \quad Medium=2, Low=1
Mapping of Course Outcomes (COs) with Programme Specific Outcomes for B.Sc., (Information Technology)

CO /	PSO	PSO1	PSO1	PSO1								
PSO	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
CO1	3	1	1	1	1	1	1	1	1	1	1	1
CO2	3	1	1	1	1	2	1	1	1	1	1	1
CO3	3	2	1	1	1	1	1	1	1	1	1	1
CO4	3	1	1	1	1	1	1	1	1	1	1	1
CO5	3	1	1	1	1	2	1	1	1	1	1	1

Strong=3, Medium=2, Low=1
Mapping of Course Outcomes (COs) with Programme Specific Outcomes for BCA

	PSO	PSO										
$\mathbf{1}$	$\mathbf{2}$	PSO										
$\mathbf{3}$	PSO	$\mathbf{4}$	PSO $\mathbf{5}$	PSO $\mathbf{6}$	PSO $\mathbf{7}$	PSO $\mathbf{8}$	PSO $\mathbf{9}$	PSO1 $\mathbf{0}$	PSO1 $\mathbf{1}$	PSO1 $\mathbf{2}$		
$\mathbf{C O}$ $\mathbf{1}$	3	1	1	1	1	1	1	1	1	1	1	1
CO $\mathbf{2}$	3	1	1	1	1	2	1	1	1	1	1	1
$\mathbf{C O}$ $\mathbf{3}$	3	2	1	1	1	1	1	1	1	1	1	1
$\mathbf{C O}$ $\mathbf{4}$	3	1	1	1	1	1	1	1	1	1	1	1
$\mathbf{C O}$ $\mathbf{5}$	3	1	1	1	1	2	1	1	1	1	1	1

Strong=3, Medium=2, Low=1

Units		lation	ing - K	wit	Outcomes	
	COs	K - Level	Section A		Section B	Section C
			MCQs		Either/Or Choice	Open Choice
			No. of Question s	K-Level	No. of Questions	No. of Questions
1	CO1	Up to K3	2	K1 \& K2	2(K2\&K2)	1(K3)
2	CO2	Up to K3	2	K1 \& K2	2(K2\&K2)	1(K3)
3	CO3	Up to K3	2	K1 \& K2	2(K2\&K2)	1(K3)
4	CO4	Up to K3	2	K1 \& K2	2(K2\&K2)	1(K3)
5	CO5	Up to K3	2	K1 \& K2	2(K2\&K2)	1(K3)
No of Questions to be asked			10		10	5
No of Questions to be answered			10		5	3
Marks for each Question			1		4	10
Total Marks for each Section			10		20	30

K1 - Remembering and recalling facts with specific answers
K2 - Basic understanding of facts and stating main ideas with general answers
K3 - Application oriented - solving problems

Distribution of Section -wise Marks with K Levels

K Levels	Section A (No Choice)	Section B (Either/ or)	Section C (Open choice)	Total Marks	\% of Marks without Choice	Consolidate d (Rounded off)
K1	5	-	-	5	5	5%
K2	5	40	-	45	45	45%
K3	-	-	50	50	50	50%
Total Marks	10	40	50	100	100	100%

Lesson Plan

Unit I	Description	Hour s	Mode
	a. Sets introduction , Notation and Description of sets, Subsets	2	 Talk, ICT
	b. Venn-Euler Diagrams, operation on sets	2	
	c. Properties of set operation	2	
	d. Relations \& Cartesian Product of Two sets	1	
	e. Representations of a Relation Operations on Relations	2	
	f. Equivalence Relations	2	
	g. Function definition and example.	1	
Unit II	Description	Hour s	Mode
	a. TF Statements , Connectives, Well Formed (Statement) Formulae	2	Chalk \& Talk, ICT
	b. Truth table of a formula, Tautology	2	
	c. Tautological implications and equivalence of formulae	2	
	d. Boolean algebra , Lattices	5	
Unit III	Description	Hour s	Mode
	a. Recurrence Relations	2	 Talk, ICT
	b. Solution of finite order homogeneous (Linear) relations	4	
	c. Solution of non - homogeneous relations	4	
	d. Generating Functions	4	
Unit IV	Description	Hour s	Mode
	a. Definition and examples, Degrees, sub graphs, matrices	4	 Talk, ICT
	b. Trees: Introduction - Characterization of trees	4	
	c. Shortest path problem.	4	
Unit V	Description	Hour	Mode
	a. Matrix operation	2	 Talk, ICT
	b. Inverse of a square matrix	2	
	c. Elementary operations and Rank of a matrix	3	
	d. Simultaneous Equations, Eigen values and Eigenvectors	4	

Course Designed by: Mrs. A. Theeba Mrs. M. Devipriya

Programme	B.Sc., (CS \& IT), BCA	Programme Code	UMA
Course Code	20UMAA22	Number of Hours/Cycle	4
Semester	II	Max. Marks	100
Part	III	Credit	4
Allied - I			
Course Title	Operations Research		
Cognitive Skills	Up to K3		

Preamble
The course is a scientific approach to aid decision making and improving efficiency of the system by applying advanced analytical methods such as simplex method, Two-phase method, dual simplex method, etc.

Unit I

10 Hours
Origin and Development of OR - Nature and features of OR - Scientific Method in OR - Modeling in Operations Research - Application of OR.

Unit II

11 Hours
Formulation of LPP - Mathematical Formulation - Solution of LPP - Graphical Method.

Unit III

15 Hours
Simplex Method: Computational procedure - Big - M Method - Two phase Method.

Unit IV
12 Hours
Transportation problem: Mathematical formulation of Transportation problem Method for finding IBFS for the Transportation problem - Modified distribution method Degeneracy of TP.

Unit V
Hours
Assignment Problem: Mathematical formulation of assignment problem Solution to Assignment problem -Travelling salesman problem Sequencing : Processing ' n ' jobs in two machines - Processing ' n ' jobs in m machines

Pedagogy:

Quiz, Assignment

Text Books

1. Kanthiswarup, Gupta.P.K, Man Mohan,(2011) "Operations Research", Sultan Chand \&Sons.
2. Arumugam .S\& Thangapandi Issac, (2010)"Topics in Operations Research", New Gamma Publishing

House (India) pvt.Ltd.,

Reference Books:

1. Sharma.S.D, "Operations Research", Kedar Nath Ram Nath \& Co.
2. Gupta.R.K, "Operations Research", Krishna Prakashan Media Pvt Ltd.,
3. Sharma J.K, , "Operations ResearchTheory and Applications", MAC Milan.

E-Resources:

- https://nptel.ac.in/courses/110/106/110106062/
- https://nptel.ac.in/courses/112/106/112106134/
- https://www.youtube.com/playlist?
list=PLjc8ejfjpgTf0LaDEHgLB3gCHZYcNtsoX
- https://onlinecourses.swayam2.ac.in/cec20_ma10/preview
- http://www.nptelvideos.in/2012/12/fundamentals-of-operations-research.html

Course Outcomes:

At the end of the course, students would be able to:

CO 1	To understand study the origin of OR, Scientific Method in OR and some applications
CO 2	Demonstrate OR approach in decision making formulate mathematical LPP models and find their solutions
CO 3	Recall and apply simplex method and its extensions
CO 4	Recognize, solve and interpret transportation
CO 5	Understand and applying the Assignment problems and Sequencing

Mapping of Course Outcomes (COs) with Programme Specific Outcomes for B.Sc., (Computer Science)

CO / PSO	PSO1PSO2 PSO3PSO4	PSO5 PSO6 PSO7	PSO8	PSO9	PSO10	PSO11	PSO12					
CO1	3	1	1	1	1	1	1	1	1	1	1	1
CO2	3	1	1	1	1	2	1	1	1	1	1	1
CO3	3	1	1	1	1	2	1	1	1	1	1	1
CO4	3	2	1	1	1	2	1	1	1	1	1	1
CO5	3	2	1	1	1	2	1	1	1	1	1	1

Strong=3, Medium=2, Low=1
Mapping of Course Outcomes (COs) with Programme Specific Outcomes for B.Sc., (Information Technology)

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	3	1	1	1	1	1	1	1	1	1	1	1
CO2	3	1	1	1	1	2	1	1	1	1	1	1
CO3	3	1	1	1	1	2	1	1	1	1	1	1
CO4	3	2	1	1	1	2	1	1	1	1	1	1
CO5	3	2	1	1	1	2	1	1	1	1	1	1

Strong=3, Medium=2, Low=1
Mapping of Course Outcomes (COs) with Programme Specific Outcomes for BCA

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	3	1	1	1	1	1	1	1	1	1	1	1
CO2	3	1	1	1	1	2	1	1	1	1	1	1
CO3	3	1	1	1	1	2	1	1	1	1	1	1
CO4	3	2	1	1	1	2	1	1	1	1	1	1
CO5	3	2	1	1	1	2	1	1	1	1	1	1

Units	Cos	$\begin{gathered} \text { Up to } \\ \text { K - } \\ \text { Level } \end{gathered}$	Section A		Articulation Mapping - K Levels with Course Outcomes (COs)	Section C Open Choice No. of Questions
					Section B Either/Or Choice No. of Questions	
			MCQs			
			No. of Question	K-Level		
1	CO1	K2	2	K1 \& K1	2(K2\&K2)	K2
2	CO2	K3	2	K1 \& K2	2(K2\&K2)	K3
3	CO3	K3	2	K1 \& K2	2(K3\&K3)	K3
4	CO4	K3	2	K1 \& K1	2(K2\&K2)	K3
5	CO5	K3	2	K1 \& K1	2(K2\&K2)	K3
No of Questions to be asked			10		10	5
No of Questions to be answered			10		5	3
Marks for each Question			1		4	10
Total Marks for each Section			10		20	30

K1 - Remembering and recalling facts with specific answers
K2 - Basic understanding of facts and stating main ideas with general answers
K3 - Application oriented - Solving problems
Distribution of Section -wise Marks with K Levels

K Levels	Section A(No Choice)	Section B (Either/ or)	Section C (Open choice)	Total Marks	\% of Mithout whoice	Consolidate d(Rounded off)
K1	8	-	-	8	8	8%
K2	2	32	10	44	44	44%
K3	-	8	40	48	48	48%
Total	10	40	50	100	100	100%
Marks	10					

Unit I	Description	Hours	Mod e
	a. Origin and Development of OR	2	Chal Talk, ICT
	b. Nature and features of OR	2	
	c. Scientific Method in OR	2	
	d. Modeling in Operations Research	2	
	e. Application of OR.	2	
Unit II	Description	Hours	Mod e
	a. Formulation of LPP	2	Chal Talk, ICT
	b. Mathematical Formulation	2	
	c. Solution of LPP	3	
	d. Graphical Method	4	
Unit III	Description	Hours	Mod e
	a. Simplex Method: Computational procedure	6	Chal Talk, ICT
	b. Big- M Method	5	
	c. Two phase Method	4	
Unit IV	Description	Hours	Mod e
	a. Mathematical formulation of Transportation problem	1	Chal Talk, ICT
	b. Method for finding IBFS for the Transportation problem	4	
	c. Modified distribution method	4	
	d. Degeneracy of TP.	3	
Unit V	Description	Hours	Mod e
	a. Mathematical formulation of assignment problem	1	Chal Talk, ICT
	b. Solution to Assignment problem	4	
	c. Travelling salesman problem	3	
	d. Sequencing : Processing ' n ' jobs in two machines - Processing ' n ' jobs in m machines	4	

Course Designed by : Mr. G. Ranjith kanna, Mr. S. Rajkumar

Programme	B.Sc Mathematics	Programme Code	UMA	
Course Code	20UMAC31	Number of Hours/Cycle	6	
Semester	III	Max. Marks	100	
Part	III	Credit	5	
Core Course V				
Course Title	Mechanics	L	T	P
Cognitive Level	Up to K3	$\mathbf{9 0}$	-	-

L-Lecture Hours, T-Tutorial Hours, P-Practical Hours

Preamble

To provide fundamentals of Mechanics and show their significant role in upper level maths, science, engineering, physical and industrial world.

Unit I	Forces acting at a point	18 Hours
	Forces acting at a point: Resultant and components - Parallelogram law of forces - Triangle law of forces - Lami’s theorem - Resolution of forces - Theorem of resolved part - Resultant of any number of coplanar forces - Condition of equilibrium (Book 1 : page no. 6-51)	
Unit II	Parallel forces and Moments	18 Hours
	Parallel forces and Moments: Forces acting on a rigid body - Parallel forces - Resultant of two like and unlike parallel forces - Moments of a forces - Varigon’s theorem - Three forces acting on a rigid body- Friction: Law of friction - Coefficient of friction - angle of friction - cone of friction (Book 1 : page no. 52-83,206-223)	
Unit III	Projectiles	$\mathbf{1 8}$ Hours
	Projectiles- Characteristics of projectile : Path is a parabola- Greatest height- time for greatest height-time of flight- horizontal range -Range of projectiles : Maximum horizontal range , Two possible direction- velocity--Range on an inclined plane (Book 2 : page no. 139-184)	
Unit IV	Impulsive forces	$\mathbf{1 8}$ Hours
	Impulsive forces: Impact - Impulses - Loss of Kinetic energy in impact - Collision of elastic bodies :Fundamental laws of impact -Impact of a smooth sphere on a fixed smooth plane- Direct and Oblique impact- Loss of Kinetic energy due to Direct and Oblique impact - Compression and restitution- Impact on a rough plane (Book 2 : page no. 201-256)	
Unit V	Central orbit	Polar coordinates: velocity and acceleration along and perpendicular to radius vector- Differential equation of n central orbits - Pedal equation for the central orbits (Book $2:$ page no. 356-395)

Pedagogy

Classroom lectures, ICT , Participatory method of teaching ,group discussion and Quiz.

Text Books

1. Venkatraman M K, (2016), Statics , Agasthiar Publications
2. Venkatraman M K, (2017),Dynamics, Agasthiar Publications

Reference Books

1. Raisingha M S, (2002) Dynamics , Mc Millan India
2. Rajeshwari I,(2016) Mechanics, Shara s Publishers
3. Durai Pandian P I \& others,(2011) Mechanics, S. Chand Publishing Company

E-Resources

- http://ndl.iitkgp.ac.in
- http://ocw.mit.edu
- http://mathforum.org
- https://nptel.ac.in/course.html

Course Outcomes

After completion of this course, the students will be able to:

CO1	Understand mathematical concepts on Forces acting at a point and develop the skill to learn how to resolve the forces acting at a point.
CO2	Summarize about forces acting on a body like moments of a force, like and unlike parallel forces, Varigon's theorem, friction and their properties
CO3	Learn to apply and clarify path and characteristic of a moving object in horizon and inclined plane
CO4	Describe and evaluate the outcomes of direct and oblique impacts of moving objects
CO5	Illustrate and Explain about central Forces, central orbits and their polar and p-r forms

Mapping of Course Outcomes (COs) with Programme Specific Outcomes

	PS O 1	PS O2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8	PSO 9	PSO 10	PS O 11	PSO 12
CO 1	3	3	3	3	1	3	2	1	-	-	-	2
CO 2	3	2	3	3	1	3	2	1	-	-	-	2
CO 3	2	3	3	2	1	3	2	2	-	-	-	2
CO 4	2	3	3	3	1	2	3	1	-	-	-	3
C0 5	3	2	3	2	1	2	3	2	-	-	-	3

3.High; 2. Moderate ; 1. Low

Articulation Mapping - K Levels with Course Outcomes (COs)

Units	COs	K-Level	$\begin{gathered} \hline \text { Section A } \\ \hline \text { MCQs } \end{gathered}$		Section B Either/ or Choice	Section C Open choice
			No. of Questions	K- Level	No. Question \quad Of	
1	CO1	Up to K2	2	K1\&K1	2(K2 \& K2)	1(K3)
2	CO2	Up to K3	2	K1\&K1	2(K2\& K2)	1(K3)
3	CO3	Up to K2	2	K1\&K1	2(K2\& K2)	1(K2)
4	CO4	Up to K3	2	K1\&K1	2(K2\& K2)	1(K3)
5	CO5	Up to K3	2	K1\&K1	2(K2\&K2)	1(K3)
No of Questions to be asked			10		10	5
No of Questions to be answered			10		5	3
Marks for each Question			1		4	10
Total marks for eachSection			10		20	30

K1 - Remembering and recalling facts with specific answers
K2 - Basic understanding of facts and stating main ideas with general answers
K3 - Application oriented - Solving problems

Distribution of Section - wise Marks with K Levels

K Levels	Section (No Choice)	Section B (Either/or)	Section C (open choice)	Total Marks	\% of Marks ithout Choice	Consolidated (Rounded off)
K1	10	-	--	10	10%	10%
K2	-	40	10	50	50%	50%
K3	-	-	40	40	40%	40%
Total Marks	10	40	50	100	100%	100%

Lesson Plan

	Forces acting at a point	18 Hours	Mode
	Introduction - Forces acting at a point	1	Chalk \& Talk
	Resultant and components of forces	1	
	Parallelogram law of forces	2	
	Triangle law of forces	1	
	Lami's theorem on forces	1	
	Resolution of forces	3	
	Theorem of resolved part of forces	3	
	Resultant of any number of coplanar forces	3	
	Condition of equilibrium of forces	3	
	Forces acting at a point	18 Hours	Mode
	Introduction - Parallel forces and Moments	1	Chalk \& Talk
	Forces acting on a rigid body	1	
	Parallel forces	1	
	Resultant of two like and unlike parallel forces	2	
	Moments of a force	1	
	Varigon's theorem	1	
	Three forces acting on a rigid body	1	
	Friction: Law of friction	1	
	Coefficient of friction	3	
	angle of friction	3	
	cone of friction	3	
	Projectiles	18 Hours	Mode
	Introduction - Projectiles	1	ICT
	Characteristics of projectile	2	
	Path is a parabola	2	
	Greatest height	1	
	Time for greatest height	1	
	Time of flight	1	
	Horizontal range	1	
	Range of projectiles : Maximum horizontal range	2	
	Two possible direction- velocity	2	
	Range on an inclined plane	5	
Unit IV l a,	Impulsive forces	18 Hours	Mode
	Introduction - Impulsive forces	1	Chalk \& Talk
	Impact - Impulses	1	
	Loss of Kinetic energy in impact	1	
	Collision of elastic bodies	2	
	Fundamental laws of impact	1	
	Impact of a smooth sphere on a fixed smooth plane-	3	
	Direct and Oblique impact	2	
	Loss of Kinetic energy due to Direct,Oblique impact	3	
	Compression and restitution	2	

	Impact on a rough plane	2	
Unit V	Central orbit	18 Hours	Mode
	Introduction- Central orbit	1	ICT
	Polar coordinates	3	
	Velocity,acceleration along,perpendicular to r vector	4	
	Differential equation of n central orbits	5	
	Pedal equation for the central orbits	5	

Course designed by Dr. S. Ramachandran, Mrs. Pradheepa

Programme	B.Sc Mathematics	Programme Code	UMA		
Course Code	20UMAC32	Number of Hours/Cycle	6		
Semester	III	Max. Marks	100		
Part	III	Credit			
Core Course VI					
Course Title	Analytical Geometry 3D and Vector Calculus	L	T	P	
Cognitive Level	Up to K3	90	-	-	

L-Lecture Hours, T-Tutorial Hours, P-Practical Hours

Preamble

To establish rectangular coordinate system in the plane and in the space, express concept of vector both geometrically and analytically, understand operations on vectors and the properties of these operations

Unit I	Plane	$\mathbf{1 8}$ Hours
	Rectangular cartesian coordinates-Distance between two points-Direction cosines-direction ratios-Area of Triangles- Planes-Equation of a plane-Intercept form-Normal form- Transformation to the normal form- Angle between two planes-Angle bisectors of two planes.	
Unit II	Straight lines	$\mathbf{1 8}$ Hours
	Equation of a straight line-Non-symmetric form-symmetric form -Two points form -A plane and a line -Coplanar lines- Skew lines-Shortest distance -Equation of the line of shortest distance.	
Unit III	The Sphere	
	Equation of a Sphere- Centre radius form-General form of a sphere- Diameter form-Tangent line and tangent plane- Angle of intersection of two spheres-Section of a sphere.	$\mathbf{1 8 ~ H o u r s ~}$
Unit IV	Vector Differentiation	$\mathbf{1 8 ~ H o u r s ~}$
	Vector algebra-Differentiation of vectors -Vector differential operator-Gradient-Geometrical interpretation-Equation of the tangent plane-Equation of normal line-Divergence and curl	
Unit V	Vector Integration	$\mathbf{1 8 ~ H o u r s ~}$
	Line integrals-Work done by a force - surface integrals- Problems on Green, Gauss and Stoke's theorems	

Pedagogy

Class Room lectures, ICT , Participatory method of teaching, Group discussion and Quiz

Text Books

1. Dr. S. Arumugam , Prof. A. Thangapandi Isaac and A.Somasundaram,(2020) Analytical Geometry, Yesdee Publishing,Pvt Ltd,Chennai
2. Dr. S. Arumugam and Prof. A. Thangapandi Isaac, (2011).Analytical Geometry of 3D and Vector Calculus, New Gamma Publishing House, January

Reference Books

1. Duraipandian.P, Laxmi Duraipandian.P, Muhilan.D, (2000), Analytical geometry of Three

Dimensions, Emerald Publishers Reprint.
2.Veerarajan.T Engineering Mathematics-II, (2014), Mc Graw Hill Publishers, New Delhi.
3.Manickavasagam Pillai.T.K\& Narayanan.T, (2007), Analytical Geometry of Three

Dimensions and Vector Calculus, Viswanathan Publishing Company, Reprint.

E-Resources

- https://nptel.ac.in/courses/111/105/111105122/
- https://ndl.iitkgp.ac.in/
- https://ocw.mit.edu/index.htm
- http://mathforum.org/library/topics/applied/
- https://ndl.iitkgp.ac.in/acc-registration.php

Course Outcomes

After completion of this course, the students will be able to:

CO1	Find the direction cosines and direction ratios, compute the equation of the plane, also calculate the angle between the plane and angle bisector of the plane.
CO2	Distinguish non-symmetric and symmetric form of a straight line, find coplanar lines and shortest distance, also equation of the line of shortest distance.
CO 3	Derive the equation of a sphere, tangent line and tangent plane, calculate the angle of intersection of two spheres and section of a sphere.
CO 4	Compute directional derivative, gradient, curl and divergence using vector differential operator
CO 5	Apply Green's theorem, Stokes' theorem and Guass theorem to integrate vector valued function

Mapping of Course Outcomes (COs) with Programme Specific Outcomes

	PS O 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8	PSO 9	PS O 1	PS O 11	PS O 12
CO 1	3	3	3	3	2	3	3	-	-	-	-	2
CO 2	3	3	2	2	2	3	3	-	-	-	-	1

CO 3	3	3	2	1	2	2	2	-	-	-	-	1
CO 4	3	3	3	3	2	2	3	-	-	-	-	1
C 0 5	2	3	2	2	2	2	3	-	-	-	-	2

3. High; 2. Moderate ; 1. Low

Articulation Mapping-K Levels with Course Outcomes (COs)						
Units	Cos	K-Level	Section A		Section B	Section C
			MCQs		Either/or Choice	Open choice
			No. of Questions	K-Level	No. of Questions	No. of Questions
1	CO1	Up to	2	(K1\&K1)	2(K2\&K2)	1(K2)
2	CO2	Up to	2	(K1\&K1)	2(K2\&K2)	1(K3)
3	CO3	Up to	2	(K1\&K1)	2(K2\&K2)	1(K3)
4	CO4	Up to	2	(K1\&K1)	2(K2\&K2)	1(K3)
5	CO5	Up to	2	(K1\&K1)	2(K2\&K2)	1(K3)
No. of Questions to be asked			10		10	5
No. of Questions to be answered			10		5	3
Marks for each Question			1		4	10
Total Marks for each Section			10		20	30

K1-Remembering and recalling facts with specific answers
$\mathbf{K} 2$-Basic understanding of facts and stating main ideas with general answers
K3-Application oriented-Solving problems

Distribution of Section-wise Marks and K Levels

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (Open choice)	Total Marks	\% of Marks without choice	Consolidated (Rounded off)
K1	10	-	-	10	10%	10%
K2	-	40	10	50	50%	50%
K3	-	-	40	40	40%	40%
Total Marks	10	40	50	100	100%	100%

$\begin{gathered} \hline \text { Unit } \\ \text { I } \end{gathered}$	Plane	18 Hours	Mode
	a. Rectangular cartesian coordinates, Distance between two points. Direction cosines-direction ratios, Area of triangles	4	
	b. Equation of a plane, Intercept form, Normal form	4	
	c. Transformation to the normal form	3	
	d. Angle between two planes	3	
	e. Angle bisectors of two planes.	4	
$\begin{gathered} \hline \text { Unit } \\ \text { II } \end{gathered}$	Straight lines	18 Hours	Mode
	a. Equation of a straight line	2	Lecture(Chalk \&Talk)PPTICT
	b. Non-symmetric form, symmetric form	3	
	c. Two points form, A plane and a line	4	
	d. Coplanar lines, Skew lines	5	
	e. Shortest distance ,Equation of the line of shortest distance.	4	
$\begin{gathered} \text { Unit } \\ \text { III } \end{gathered}$	The Sphere	18 Hours	Mode
	a. Equation of a Sphere, Centre radius form	3	Lecture Talk) PPT ICT
	b. General form of a sphere, Diameter form	3	
	c. Tangent line and tangent plane	3	
	d. Angle of intersection of two spheres	4	
	e. Section of a sphere.	5	
$\begin{aligned} & \hline \text { Unit } \\ & \text { IV } \end{aligned}$	Vector Differentiation	18 Hours	Mode
	a. Vector algebra, Differentiation of vectors	4	$\begin{gathered} \hline \text { Lecture } \\ \text { (Chalk \& } \\ \text { Talk) } \\ \text { PPT } \\ \text { ICT } \\ \hline \end{gathered}$
	b. Gradient, Geometrical interpretation	5	
	c. Equation of the tangent plane. Equation of normal line	4	
	d. Divergence and curl	5	
$\begin{gathered} \text { Unit } \\ \mathbf{V} \end{gathered}$	Vector Integration	18 Hours	Mode
	a. Line integrals, Work done by a force	3	Lecture (Chalk \& Talk) ICT Group discussio n Quiz
	b. Surface integrals	3	
	c. Problems on Green theorem	4	
	d. Problems on Gauss theorem	4	
	e. Problems on Stoke's theorem	4	

Course designed by Dr.J.KaligaRani

Programme	B.Sc Mathematics	Programme Code	UMA					
Course Code	20UMAC41	Number of Hours/Cycle	6					
Semester	IV	Max. Marks	100					
Part	III	Credit	5					
Course Title	Real Analysis Course VII	L	T	P				
Cognitive Level	Up to K3	90	-	-				

L-Lecture Hours, T-Tutorial Hours, P-Practical Hours

Preamble

This course aims to introduce metric space, countable set, connected set, compact set and related theorems

Unit I	Countable sets	$\mathbf{1 8}$ Hours
	Countable sets - Uncountable sets - Definition and examples of a metric space - bounded sets in a metric space open ball in a metric space - open sets - subspaces -interior of a set	
Unit II	Metric Spaces	$\mathbf{1 8}$ Hours
	Metric Spaces - closed sets - closure - limit point -Dense set -Complete Metric Spaces -Completeness - Baire's Category theorem	
Unit III	Continuity Continuity- homeomorphism- uniform continuity - discontinuous functions on R	$\mathbf{1 8}$ Hours
Unit IV	Connectedness	
	Connectedness - Definition and examples - connected subsets of R - connectedness and continuity	$\mathbf{1 8}$ Hours
Unit V	Compactness	
	Compactness - Compact metric spaces - compact subsets of R - Heine Borel theorem- equivalent characterisation for compactness	$\mathbf{1 8 ~ H o u r s ~}$

Pedagogy

Class Room lectures, ICT , Participatory method of teaching, Group discussion and Quiz Text Book

1. Arumugam. S. (2013) Modern Analysis New Gamma publications

Palayamkottai.
UNIT I : Chapter $1-1.2,1.3$ (Solved Problems Excluded)

Chapter 2-2.1-2.6 (Solved Problems in 2.4 Excluded)
UNIT II : Chapter 2-2.7-2.10 (Solved Problems Excluded)
Chapter 3-3.0-3.2 (Solved Problems Excluded)
UNIT III : Chapter 4-4.1-4.4
UNIT IV : Chapter 5-5.1-5.3

UNIT V : Chapter 6 - 6.1, 6.2, 6.3

Reference Books

1. Shanthi Narayanan (2007) Elements of Real Analysis S.Chand \& Co New Delhi
2. Goldberg.R Methods of (2017) Real Analysis Oxford \& IBH publishing co New Delhi
3. K.Chandrasekara Rao ,K.S.Narayanan Real Analysis Volume -I (2008)S.Viswanathan (Printers \& Publishers)Pvt.ltd Company
4. M.K.Singal and Asha Rani Singal (2008) A first course in Real Analysis
S.Chand \& Co New Delhi

E-Resources

- https://nptel.ac.in/courses/111/103/111103070/
- https://nptel.ac.in/courses/111/105/111105041/
- https://nptel.ac.in/courses/111/106/111106046/
- https://nptel.ac.in/courses/111/106/111106139/
- https://nptel.ac.in/courses/111/106/111106113/

Course Outcomes

After completion of this course, the students will be able to:

CO1	Acquire knowledge in countability and open sets
CO2	Develop problem solving skills closed set, limit point and dense set
CO3	Describe continuous and uniform continuous function
CO4	Get basic knowledge on connected set .
CO5	Acquire knowledge in compact space.

Mapping of Course Outcomes (COs) with Programme Specific Outcomes

	PS O1	PS O2	PS O3	PS O4	PS O5	PS O6	PS O7	PS O8	PS O9	PSO 10	PSO 11	PSO 12
CO 1	3	3	2	2	1	1	1	-	-	-	-	-
CO 2	3	2	3	3	1	1	1	-	-	-	-	-
CO 3	2	3	2	3	1	2	1	-	-	-	-	-

CO 4	3	2	3	2	1	2	1	-	-	-	-	-
CO 5	3	3	2	2	1	1	1	-	-	-	-	-

3. High; 2. Moderate ; 1. Low

Articulation Mapping-K Levels with Course Outcomes (COs)

Units	Cos	K-Level	Section A		Section B	Section C
			MCQs		Either/or Choice	Open choice
			No. of Questions	K-Level	No. of Questions	No. of Questions
1	CO1	Up to K3	2	K1\&K1	2(K2\&K2)	1(K2)
2	CO2	Up to K3	2	K1\&K1	2(K3\&K3)	1(K2)
3	CO3	Up to K3	2	K1\&K1	2(K2\&K2)	1(K2)
4	CO4	Up to K3	2	K1\&K1	2(K2\&K2)	1(K3)
5	CO5	Up to K3	2	K1\&K1	2(k3\&K3)	1(K2)
No. of Questions to be asked			10		10	5
No. of Questions to be answered			10		5	3
Marks for each Question			1		4	10
Total Marks for each Section			10		20	30

K1-Remembering and recalling facts with specific answers
K2-Basic understanding of facts and stating main ideas with general answers
K3-Application oriented-Solving problems
Distribution of Section-wise Marks and K Levels

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (Open choice)	Total Marks	\% of Marks without choice	Consolidated (Rounded off)
K1	10	-	-	10	10%	10%
K2	-	24	40	64	64%	64%
K3	-	16	10	26	26%	26%
Total Marks	10	40	50	100	100%	100%

Lesson Plan

$\begin{gathered} \text { Unit } \\ \text { I } \end{gathered}$	Countable sets	18 Hours	Mode
	a. Countable sets	2	Chalk \& Talk
	b.Uncountable sets	1	
	c.Definition and examples of a metric space	4	
	d.Bounded sets in a metric space	2	
	e.Open ball in a metric space	2	
	f.Open sets	3	
	g.Subspaces	2	
	h.Interior of a set	2	
$\begin{gathered} \text { Unit } \\ \text { II } \end{gathered}$	Metric spaces	18 Hours	Mode
	a.Closed sets , closure	5	Chalk \& Talk
	b.Limit point -Dense set	3	
	c.Complete Metric spaces - Introduction	2	
	d.Completeness	4	
	e.Baire's category theorem	4	
$\begin{gathered} \text { Unit } \\ \text { III } \end{gathered}$	Continuity	18 Hours	Mode
	a.Continuity	7	Chalk \& Talk
	b.Homomorphism	4	
	c.Uniform continuity	4	
	d.Discontinuous functions on R	3	
$\begin{aligned} & \hline \text { Unit } \\ & \text { IV } \end{aligned}$	Connected sets	18 Hours	Mode
	a.Connected sets - Introduction	2	Lecture Chalk \& Talk
	b.Definition \& Examples and theorems	6	
	c.Connected subsets of R	5	
	d.Connected and continuity	5	
$\begin{aligned} & \hline \text { Unit } \\ & \mathbf{V} \end{aligned}$	Compactness	18 Hours	Mode
	a.Compactness - Introduction	2	Chalk \& Talk
	b.Compact metric spaces	4	
	c.Compact subsets of R	3	
	d.Heine Borel theorem	3	
	e.Equivalent characterisation for compactness	6	

Course designed by Prof. N. Sakunthala

Programme	B.Sc Mathematics	Programme Code	UMA		
Course Code	20UMAC42	Number of Hours/Cycle	6		
Semester	IV	Max. Marks	100		
Part	III	Credit	5		
Core Course VIII					
Course Title	Operations Research	L	T	P	
Cognitive Level	Up to K3	90	-	-	

L-Lecture Hours, T-Tutorial Hours, P-Practical Hours

Preamble

This course aims to develop students to use quantitative methods and techniques for effective decision making, mathematical model formulation and applications that are used in solving real life problems.

Unit I	Linear Programming Problem(L.P.P) formulation	-Mathematical	18 Hours
	Linear Programming Problem(L.P.P) formulation: Introduction - Linear Programming Problem - Mathematical formulation of the problem - Illustration on Mathematical formulation of LPPs. Linear Programming Problem - Graphical solution and extension: Introduction - Graphical solution method - Some exceptional cases - General linear programming problem - Canonical and		
Unit II	Linear Programming Problem- Simplex method		
	Linear Programming Problem- Simplex method: Introduction - Basic solution - Basic feasible solution - Reduction of a feasible solution to a basic feasible solution - The computational procedure (The simplex algorithms and Problems) - Use of artificial variables - Big M method - Two phase Method - Degeneracy in Linear Programming.		
Unit III	Duality in Linear Programming	18 Hours	
	Duality in Linear Programming: Introduction - General Primal - Dual pair - Formulating a dual Problem - Primal - Dual pair in matrix form - Duality theorems -		

	Complementary slackness Theorem - Duality and simplex method - Dual simplex method.	
Unit IV	Transportation Problem \& Assignment Problem	$\mathbf{1 8}$ Hours
	Transportation Problem: Introduction - LP formulation of the Transportation Problem - The Transportation table- Loops in Transportation table-Solution of a Transportation Problem- Finding an initial basic feasible solution- Test for optimality - Degeneracy in Transportation Problem - Transportation Algorithm (MODI Method).Assignment Problem: Introduction-Mathematical formulation of the problem - Solution methods of the Assignment problem - Special cases in Assignment Problem-The Travelling Salesman Problem.	
Unit V	Games and Strategies	18 Hours
	Games and Strategies - Introduction - Two person zero sum games - Some Basic terms -The MaxiMini-MiniMax principle - Games without Saddle Point - Mixed strategies - Graphical solution of $2 \times n$ and $\times 2$ games - Dominance property - Arithmetic Method for $\mathrm{n} \times \mathrm{n}$ games-General solution of m $\times \mathrm{n}$ rectangular games (linear programming method).	

Pedagogy

Chalk and Talk, Seminar, Group discussion, Quiz, Assignment, Numerical Exercises.

Text Book

1. Kantiswarup, P.K. Gupta and Manmohan, (2011),Operations Research,Sultan Chand \& Sons Educational Publishers, New Delhi.

Reference Books

1. R.PaneerSelvam, (2006), Operations Research ,Prentice Hall of India Private limited,New Delhi.
2. Dr.S.Arumugam \&Mr. A.Thangapandi Issac,(2010), Topics in Operations Research Linear Programming New Gamma Publishing House ,Palayamkottai.
3. A.M.Natarajan ,P.Balasubramani ,A.Tamilarasi ,(2006), Operations Research, Pearson, Delhi.

E-Resources

- https://nptel.ac.in/courses/110/106/110106062/
- https://onlinecourses.swayam2.ac.in/cec20_ma10/preview
- http://www.nptelvideos.in/2012/12/fundamentals-of-operations-research.html
- https://ndl.iitkgp.ac.in/
- https://ocw.mit.edu/
- https://mathforum.org

Course Outcomes

After completion of this course, the students will be able to:

CO 1	Convert real life problems into mathematical models by making use of inequalities and find their solutions.
CO 2	Recall and Develop the skills in solving LPP using Various Method.
CO 3	Translate LPP using duality principle and find their solutions.
CO 4	Recognize, solve and interpret transportation and assignment problems.

CO5	Recall mathematical skills to analyze and solve problem in games and strategies.

Mapping of Course Outcomes (COs) with Programme Specific Outcomes

	PS	PSO										
	O	O	O	O	O	O	O	O	O	O	O	12
1	2	3	4	5	6	7	8	9	10	11		
CO 1	3	2	3	3	3	3	2	2	-	-	-	-
CO 2	3	2	3	3	1	2	2	2	-	-	-	-
CO 3	1	1	1	1	1	2	1	1	-	-	-	-
CO 4	3	3	3	3	2	2	2	3	-	-	-	-
C 05	3	3	3	3	3	3	2	3	-	-	-	-

3.High; 2. Moderate ; 1. Low ; - No correlation

Articulation Mapping - K Levels with Course Outcomes (COs)

Units	COs	K-Level	Section A		Section B	Section C
			No. of Questions	K-Level	No. of Choice Question	Open choice
	CO1	Up to K3	2	K1 \&K2	$2(\mathrm{~K} 2 \& K 2)$	$1(\mathrm{~K} 3)$
2	CO2	Up to K3	2	K1 \&K2	$2(\mathrm{~K} 2 \& \mathrm{~K} 2)$	$1 \mathrm{~K}(3)$
3	CO3	Up to K2	2	K1 \&K2	$2(\mathrm{~K} 2 \& \mathrm{~K} 2)$	$1 \mathrm{~K}(3)$
4	CO4	Up to K3	2	K1 \&K2	$2(\mathrm{~K} 2 \& K 2)$	$1 \mathrm{~K} 3)$
5	CO5	Up to K3	2	K1 \&K2	$2(\mathrm{~K} 2 \& \mathrm{~K} 2)$	$1(\mathrm{~K} 3)$
No of Questions to be asked	10		10	5		
No of Questions to be answered	10		5	3		
Marks for each Question						

Total marks for each Section	10		20	30

K1 - Remembering and recalling facts with specific answers
K2 - Basic understanding of facts and stating main ideas with general answers
K3 - Application oriented - Solving problems
Distribution of Section - wise Marks with K Levels

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (Open choice)	Total Marks	\% of Marks without Choice
K1	5	-	-	5	5
K2	5	40	-	45	45
K3	-	-	50	50	50
Total Marks	10	40	50	100	100

Lesson Plan

Unit I	Linear Programming Problem(L.P.P) Mathematical formulation	18 Hours	Mode
	a. Linear Programming Problem(L.P.P) :Introduction	1	Lecture, Chalk \& Talk, PPT
	b. Mathematical formulation of the problem, Illustration on Mathematical formulation of LPPs	6	
	c. Graphical solution method.	5	
	d. Some exceptional cases.	3	
	e. General linear programming problem.	1	
	f.Canonical and Standard forms of L.P.P	2	
Unit II	Linear Programming Problem- Simplex method	18 Hours	Mode
	a. The Simplex method : Introduction	1	Lecture, Talk, PPT
	b. Basic solution, Basic feasible solution	1	
	c. Reduction of feasible solution to a basic feasible solution	2	
	d.The computational procedure (The simplex algorithms and Problems)	5	
	e.Use of artificial variables	1	
	f.Big M method	3	
	g.Two phase Method	3	
	h.Problems of Degeneracy	2	
Unit III	Duality in Linear Programming	18 Hours	Mode
	a.Duality in Linear Programming: Introduction, General Primal - Dual pair	2	Lecture, Chalk \& Talk, PPT
	b.Formulating a dual Problem	2	
	c.Primal - Dual pair in matrix form	1	
	d.Duality theorems	3	
	e.Complementary slackness Theorem	3	
	f.Duality and simplex method	4	

	g.Dual simplex method	3	
Unit IV	Transportation Problem \& Assignment Problem	$\begin{aligned} & \hline 18 \\ & \text { Hours } \end{aligned}$	Mode
	a.The Transportation Problem :Introduction , Mathematical formulation, Loops in a transportation table	2	Lecture, Chalk \& Talk, PPT
	b.Finding IBFS	3	
	c.Test for optimality	1	
	d.Degeneracy in transportation problem	1	
	e.Transportation algorithm (MODI Method)	2	
	f.The Assignment problem (A.P) : Introduction, Mathematical formulation of an A.P	1	
	g.Hungarian method	3	
	h.Special case in Assignment problem, Maximization case	2	
	i.Unbalanced assignment problem	1	
	j.Travelling salesman problem	2	
Unit V	Games and Strategies	18 Hours	Mode
	a.Games and Strategies : Introduction	1	Lecture, Chalk \& Talk, PPT
	b.Two person zero sum games, Some Basic terms	2	
	c.The MaxiMini-MiniMax principle	1	
	d.Games without Saddle Point, Mixed strategies	2	
	e.Solution of 2×2 rectangular games	2	
	f.Graphical solution for $2 \times \mathrm{n}, \mathrm{m} \times 2$	3	
	g.Dominance property	2	
	h.Arithmetic Method for $\mathrm{n} \times \mathrm{n}$ games	3	
	i.Solution of game by linear programming method	2	

Course designed by : Dr. C. Subramani

Allied Courses offered to Other Departments
$\left.\left.\begin{array}{|l|l|l|l|l|l|}\hline \text { Programme } & \begin{array}{l}\text { B.Sc.(Physics and } \\ \text { Chemistry) }\end{array} & \text { Programme Code }\end{array} \right\rvert\, \begin{array}{l}\text { UMA } \\ \hline \text { Course Code } \\ \hline \text { 20UMAA31 }\end{array} \begin{array}{l}\text { Number of } \\ \text { Hours/Cycle }\end{array}\right)$

L-Lecture Hours, T-Tutorial Hours, P-Practical Hours

Preamble

This course is to enable the students to know the basic concepts of complex analysis, Statistics, Groups, Laplace Transform which are used to attain skills to broaden knowledge in science and technology

Unit I	Complex Analysis	$\mathbf{1 8}$ Hours
	Introduction to complex numbers - complex differentiation - Cauchy Riemann equation - analytic function - harmonic equation - related problems	
Unit II	Statistics	$\mathbf{1 8}$ Hours
	Sampling theory - Large sample mean - small sample mean - normal test - t-test - Chi-square test	$\mathbf{1 8}$ Hours
Unit III	Fourier Series	Fourier series - odd and even function- Properties of odd and even function - half range Fourier series - cosine and sine series - change of interval.
Unit IV	Laplace Transform	$\mathbf{1 8}$ Hours
	Laplace Transforms - the inverse Laplace Transform - solution of differential equation using Laplace Transform	$\mathbf{1 8}$ Hours
Unit V	Groups Groups - elementary properties of a group -equivalent definitions of a group- permutation groups - subgroups - cyclic group - order of an element - cosets and Lagrange's theorem	

Pedagogy

Class Room lectures, ICT , Participatory method of teaching, Group discussion and Quiz

Text Book

1. Narayanan S, Kandasamy P,Hanumantha Rao R, Manicavachagam Pillay T K, (2010),
"Ancillary Mathematics volume-II", S Viswanathan Printers and Publishers,Chennai.
2. Arumugam. S, June, (2014), "Allied Mathematics paper-III", New Gamma

Publications, Palayamkottai.
3.Arumugam.S, Thangapandi Isaac,June (2015), Statistics, New Gamma Publications, Palayamkottai.

Reference Books

1. Manickavasagam Pilai. T.K \& Narayanan. S, (2015), "Calculus, Volumes I \& II", Publishers:S.Viswanathan.
2. Arumugam.S, 2011, ANCILLARY MATHEMATICS vol IV, New Gamma

Publications, Palayamkottai.
3. Manickavasagam pillai.T.K \& Narayanan.S,(2011),"Algebra Volume I and Trigonometry", S.Viswanathan Publications.

E-Resources

- https://nptel.ac.in/courses/111/103/111103070/
- https://nptel.ac.in/courses/111/105/111105041/
- https://nptel.ac.in/courses/111/106/111106046/
- https://nptel.ac.in/courses/111/106/111106139/
- https://nptel.ac.in/courses/111/106/111106113/

Course Outcomes

After completion of this course, the students will be able to:

CO1	Apply the concept and consequences of analyticity and the Cauchy- Riemann equations and of results on harmonic and entire functions
CO2	Apply various statistical analysis tools
CO3	Construct the Fourier series of given periodic functions by evaluating Fourier coefficients.
CO4	Find the Laplace Transform of various functions and solve the linear differential equations using Laplace Transform
CO5	Illustrate the Lagrange's theorem and cosets

Mapping of Course Outcomes (COs) with Programme Specific Outcomes

	$\begin{gathered} \mathrm{PS} \\ \mathrm{O} \\ 1 \end{gathered}$	$\begin{gathered} \hline \text { PSO } \\ 2 \end{gathered}$	$\begin{gathered} \mathrm{PSO} \\ 3 \end{gathered}$	$\begin{gathered} \hline \text { PSO } \\ 4 \end{gathered}$	$\begin{gathered} \hline \text { PSO } \\ 5 \end{gathered}$	$\begin{gathered} \text { PSO } \\ 6 \end{gathered}$	$\begin{gathered} \hline \text { PSO } \\ 7 \end{gathered}$	$\begin{gathered} \hline \text { PSO } \\ 8 \end{gathered}$	$\begin{gathered} \hline \text { PSO } \\ 9 \end{gathered}$	$\begin{gathered} \text { PS } \\ \text { O } \\ 10 \end{gathered}$	$\begin{gathered} \hline \text { PS } \\ \text { O } \\ 11 \end{gathered}$	$\begin{gathered} \hline \text { PS } \\ \text { O } \\ 12 \end{gathered}$
CO	3	3	1	2	2	3	2	-	-	-	-	-
CO 2	2	2	3	3	3	3	3	2	-	-	-	-
$\begin{gathered} \mathrm{CO} \\ 3 \end{gathered}$	3	2	2	2	2	3	3	1	-	-	-	-
$\begin{gathered} \mathrm{CO} \\ 4 \end{gathered}$	3	2	2	2	1	3	2	2	-	-	-	-
C0	3	3	2	2	2	3	3	2	-	-	-	-

5												

3. High; 2. Moderate ; 1. Low

Articulation Mapping - K Levels with Course Outcomes (COs)

Units	COs	K-Level	$\begin{gathered} \hline \text { Section A } \\ \hline \text { MCQs } \end{gathered}$		Section B Either/ or Choice No. of Questions	Section C Open choice No. of Questions
			No. of Questions	K- Level		
1	CO1	Up to K3	2	K1\&K1	2 (K2\&K2)	1(K3)
2	CO2	Up to K3	2	K1\&K1	2(K2\&K2)	1(K3)
3	CO3	Up to K3	2	K1\&K1	2(K2\&K2)	1(K3)
4	CO4	Up to K3	2	K1\&K1	2(K2\&K2)	1(K3)
5	CO5	Up to K3	2	K1\&K1	2(K2\&K2)	1(K3)
No of Questions to be asked			10		10	5
No of Questions to be answered			10		5	3
Marks for each Question			1		4	10
Total marks for each Section			10		20	30

K1 - Remembering and recalling facts with specific answers
K2 - Basic understanding of facts and stating main ideas with general answers
K3 - Application oriented - Solving problems

Distribution of Section - wise Marks with K Levels

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (Open choice)	Total Marks	\% of Marks without Choice
K1	10		-	10	10%

K2	-	40	-	40	40%
K3	-	-	50	50	50%
Total Marks	10	40	50	100	100%

Lesson Plan

Unit I	Description	18 Hours	Mode
	a. Introduction to complex numbers	2	Lecture, Chalk \& Talk, PPT
	b. complex differentiation	4	
	c. Cauchy Riemann equation	4	
	d. analytic function	4	
	e. related problems	4	
Unit II	Description	18 Hours	Mode
	a. Sampling theory	2	Lecture, Chalk \& Talk, PPT
	b. Large sample mean	5	
	c. small sample mean	5	
	d. normal test	2	
	e. t-test	2	
	f. chi square test	2	
Unit III	Description	18 Hours	Mode
	a. Fourier series	2	Lecture, Chalk \& Talk, PPT
	b. odd and even function	4	
	c. Properties of odd and even function	3	
	d. half range Fourier series	4	
	e. cosine and sine series	3	
	f. change of interval	2	
Unit IV	Description	18 Hours	Mode
	a. Laplace Transforms	4	Lecture, Chalk \& Talk, PPT
	b. some elementary properties of Laplace transform	3	
	c. problems on laplace transform	3	
	c. inverse Laplace Transform	4	
	d. solution of differential equation using Laplace Transform	4	
Unit V	Description	18 Hours	Mode
	a. Groups	2	Lecture, Chalk \& Talk, PPT
	b. elementary properties of a group	3	
	c. equivalent definitions of a group	3	
	d. permutation groups	3	

	e. subgroups	2
	f. cyclic group	2
	g. cosets and Lagrange's theorem	3

Course designed by Dr. P. Pandiammal

Programme	B.Sc.(Physics \& Chemistry)	Programme Code	UMA		
Course Code	20UMAA41	Number of Hours/Cycle	6		
Semester	IV	Max. Marks	100		
Part	III	Credit	5		
Allied Course IV					
Course Title	Allied Mathematics - IV		L	T	P
Cognitive Level	Up to K3		90	-	-

L-Lecture Hours, T-Tutorial Hours, P-Practical Hours

Preamble
This course aims to develop students to use quantitative methods and techniques for effective decision making, mathematical model formulation and applications that are used in solving real life problems.

Unit I	Linear Programming Problem -Mathematical formulation	$\mathbf{1 8}$ Hours
	Linear Programming Problem(L.P.P) -Mathematical formulation: Introduction - Linear Programming Problem - Mathematical formulation of the problem - Illustration on Mathematical formulation of LPPs. Linear Programming Problem - Graphical solution and extension: Introduction - Graphical solution method - Some exceptional cases - General linear programming problem - Canonical and Standard forms of L.P.P.	
Unit II	Linear Programming Problem- Simplex method	$\mathbf{1 8}$ Hours
	Linear Programming Problem- Simplex method: Introduction - Basic solution - Basic feasible solution - Fundamental properties of solutions (Problems Only) - The computational procedure (The simplex algorithms and Problems).	
Unit III	Transportation Problem	$\mathbf{1 8}$ Hours
	Transportation Problem: Introduction - LP formulation of the Transportation Problem - The Transportation table- Loops in Transportation table-Solution of a Transportation Problem-	

	Finding an initial basic feasible solution- Test for optimality - Degeneracy in Transportation Problem - Transportation Algorithm (MODI Method).	
Unit IV	Assignment Problem	$\mathbf{1 8}$ Hours
	Assignment Problem: Introduction-Mathematical formulation of the problem - Solution methods of the Assignment problem Special cases in Assignment Problem-The Travelling Salesman Problem.	
Unit V	Games and Strategies	$\mathbf{1 8}$ Hours
	Games and Strategies - Introduction - Two person zero sum games - Some Basic terms -The MaxiMini-MiniMax principle - Games without Saddle Point - Mixed strategies - Graphical solution of $2 \times \mathrm{n}$ and $\mathrm{m} \times 2$ games - Dominance property.	

Pedagogy

Chalk and Talk, Seminar, Group discussion, Quiz, Assignment, Numerical Exercises.

Text Book

1. Kantiswarup, P.K. Gupta and Manmohan, (2011),Operations Research, Sultan Chand \& Sons Educational Publishers, New Delhi.

Reference Books

1. R.PaneerSelvam, (2006), Operations Research ,Prentice Hall of India Private limited,New Delhi
2. Dr.S.Arumugam $\&$ Mr. A.Thangapandi Issac, (2010), Topics in Operations Research Linear Programming New Gamma Publishing House, Palayamkottai
3. A.M.Natarajan ,P.Balasubramani ,A.Tamilarasi ,(2006), Operations Research, Pearson, Delhi.

E-Resources

- https://nptel.ac.in/courses/110/106/110106062/
- https://onlinecourses.swayam2.ac.in/cec20_ma10/preview
- http://www.nptelvideos.in/2012/12/fundamentals-of-operations-research.html
- https://ndl.iitkgp.ac.in/
- https://ocw.mit.edu/
- https://mathforum.org

Course Outcomes

After completion of this course, the students will be able to:

CO1	Convert real life problems into mathematical models by making use of inequalities and find their solutions
CO2	Recall and Develop the skills in solving LPP using Various Method
CO3	Recognize, solve and interpret transportation and assignment problems
CO4	Interpret in the common man's language and to hone the ability to do reality checks on calculations.
CO5	Recall mathematical skills to analyze and solve problem in games and strategies

Mapping of Course Outcomes (COs) with Programme Specific Outcomes

	PSO	PS	PS									
1	2	3	4	5	6	7	8	9	10	O	O	

CO											11	12
CO	3	2	3	3	3	3	2	2	-	-	-	-
CO 2	3	2	3	3	1	2	2	2	-	-	-	-
CO 3	3	3	3	3	2	2	2	3	-	-	-	-
CO 4	3	3	3	3	2	2	2	3	-	-	-	-
C0 5	3	3	3	3	3	3	2	3	-	-	-	-

3. High; 2. Moderate ; 1. Low; - No Correlation

Articulation Mapping - K Levels with Course Outcomes (COs)

Units	COs	K-Level	Section A		Section B	Section C
			MCQs		Either/ or	Open choice
					Choice	
			No. of Question s	K-Level	No. of Questions	No. of Questions
1	CO1	Up to K3	2	K1\&K2	2(K2\&K2)	1(K3)
2	CO2	Up to K3	2	K1\&K2	2(K2\&K2)	1(K3)
3	CO3	Up to K3	2	K1\&K2	2(K2\&K2)	1(K3)
4	CO4	Up to K3	2	K1\&K2	2(K2\&K2)	1(K3)
5	CO5	Up to K3	2	K1\&K2	2(K2\&K2)	1(K3)
No of Questions to be asked			10		10	5
No of Questions to be answered			10		5	3
Marks for each Question			1		4	10
Total marks for each Section			10		20	30

K1 - Remembering and recalling facts with specific answers
K2 - Basic understanding of facts and stating main ideas with general answers
K3 - Application oriented - Solving problems
Distribution of Section - wise Marks with K Levels

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (Open choice)	Total Marks	\% of Marks without Choice
K1	5	-	-	5	5
K2	5	40	-	45	45
K3	-	-	50	50	50
Total Marks	10	40	50	100	100

Lesson Plan

Unit I	Linear Programming Problem - Mathematical formulation	$\mathbf{1 8}$ Hours	Mode
	a. Linear Programming Problem(L.P.P) :Introduction	Lecture, 	
	b. Mathematical formulation of the problem, Illustration on Mathematical formulation of LPPs		Talk, PPT

Unit IV	Assignment Problem	18 Hours	Mode
	a.The Assignment problem (A.P) : Introduction, Mathematical formulation of an A.P	2	Lecture, Chalk \& Talk, PPT
	b. Hungarian method	6	
	c. Special case in Assignment problem, Maximization case	4	
	d. Unbalanced assignment problem	2	
	e. Travelling salesman problem	4	
Unit V	Games and Strategies	18 Hours	Mode
	a.Games and Strategies: Introduction	1	Lecture, Chalk \& Talk, PPT
	b.Two person zero sum games, Some Basic terms	2	
	c.The MaxiMini-MiniMax principle	2	
	d.Games without Saddle Point, Mixed strategies	3	
	e.Solution of 2×2 rectangular games	3	
	f.Graphical solution for $2 \times \mathrm{n}, \mathrm{m} \times 2$	4	
	g.Dominance property	3	

Course designed by Dr. C. Subramani

Programme	BBA	Programme Code	UMA		
Course Code	20UMAA32	Number of Hours/Cycle	6		
Semester	IV	Max. Marks	100		
Part	III	Credit	4		
Allied Course					L
Course Title	Business Statistics	T	P		
Cognitive Level	Up to K3		-	-	

L-Lecture Hours, T-Tutorial Hours, P-Practical Hours

Preamble

In this course significance is placed on the applications of measures of central tendency, measures of dispersion, skewness and index numbers in business and finance

Unit I	Classification and Tabulation	17 Hours
	Definition- Application of statistics in various fields. Collection of Data- Primary and Secondary data- Framing a Questionnaire- Sampling- Methods of Sampling- Classification of Sampling- Characteristics. Objects, Types- frequency Distribution- Cumulative Frequency Distribution -Tabulation- Types- Simple Problems.	
Unit II	Diagrammatic Presentation	$\mathbf{1 7 H o u r s}$
	Diagrammatic Presentation- Types - Line Diagram. Bar Diagram, Pie Diagram- Graphic Presentation- Graphs of Frequency Distribution- Histogram, Frequency Polygon.	

	Frequency craves, Ogives	
Unit III	Measures of Central Tendency	20 Hours
	Measures of Central Tendency- Mean, Median, Mode- Geometric mean, Harmonic Mean- Quartiles. Deciles- Merits and Demerits- Measures of Dispersion- Methods of Measuring Dispersion- Range, Inter Quartile range, Mean Deviation - standard Deviation- co-Efficient of variation	
Unit IV	Measures of Skewness and Correlation	$\mathbf{1 8}$ Hours
	Skewness - Meaning - Measures of Skewness - Karl Person's and Bowley's Co-efficient of Skewness - Correlation - Rank correlation	
Unit V	Index Numbers	$\mathbf{1 8}$ Hours
Sampling Average of Price Relatives- Weighted Index		
Number- Laspeyre's, Bowler's Fischer's and Marshall-		
Edgeworth Index Number- Test of Consistency of Number -		
Is Fischer's index number an ideal index number.		

Pedagogy

Classroom lectures, ICT, Participatory method of teaching, group discussion and Quiz

Text Book

1. Vittal .P.R, (2001), " Business Statistics", Margham Publications, Chennai.

Reference Books

1. Dr.Manoharan.M, 2010, "Statistical Method", Palani Paramount Publications, Palani. 2.Pillai.R.S.N\&Bagavathi, (2006), "Business Statistics",S.Chand Publication, New Delhi. 3.Alagar.K, (2009), " Business statistics", Tata. Mc Graw publication, New Delhi.

E-Resources

- https://www.mooc-list.com/course/statistics-business-i-edx
- https://www.classcentral.com/course/swayam-business-statistics-12992
- https://nptel.ac.in/courses/110/107/110107114

Course Outcomes

After completion of this course, the students will be able to:

CO 1	Understand the data classification and tabulations
CO 2	Acquire knowledge of solving problems on Presentation
CO 3	Solve problems in Measures of central tendency and Measures of Dispersion
CO 4	Solve problems in Standard deviations and Skewness
CO 5	Acquire knowledge of solving problems in Index Numbers.

Mapping of Course Outcomes (COs) with Programme Specific Outcomes

	PS	PS	PSO									
	O	O 2	3	4	5	6	7	8	9	10	11	12

	1											
CO 1	$\mathbf{1}$	3	1	1	2	1	1	1	1	1	1	1
CO 2	$\mathbf{1}$	3	1	1	2	1	1	1	1	1	1	1
CO 3	$\mathbf{2}$	3	1	2	1	1	1	1	1	1	1	1
CO 4	$\mathbf{2}$	3	1	2	1	1	1	1	1	1	1	1
CO 5	$\mathbf{1}$	3	1	2	1	1	1	1	1	1	1	1

3.High; 2. Moderate ; 1. Low

Articulation Mapping - K Levels with Course Outcomes (COs)

Units	COs	K-Level	Section A		Section B	Section C
			MCQs		Either/ or Choice	Open choice
			No. of Questions	K-Level	No. of Questions	No. of Questions
1	CO1	Up to K2	2	2(K1\&K1)	2(K2, K2)	1(K2)
2	CO 2	Up to K2	2	2(K1\&K1)	2(K2.K2)	1(K2)
3	CO3	Up to K3	2	2(K1\&K2)	2(K2,K2)	1(K3)
4	CO4	Up to K3	2	2(K1\&K1)	2(K3,K3)	1(K3)
5	CO5	Up to K3	2	2(K1\&K1)	2(K3,K3)	1(K3)
No of Questions to be asked			10		10	5
No of Questions to be answered			10		5	3
Marks for each Question			1		4	10

| Total marks for each
 Section | 10 | 20 | 30 |
| :--- | :---: | :---: | :---: | :---: |

K1 - Remembering and recalling facts with specific answers
K2 - Basic understanding of facts and stating main ideas with general answers
K3 - Application oriented - Solving problems
Distribution of Section - wise Marks with K Levels

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (Open Choice)	Total Marks	\% of Marks without Choice
K1	9	-	-	9	9%
K2	1	24	20	45	45%
K3	-	16	30	46	46%
Total Marks	10	40	50	100	100%

Lesson Plan

Unit I	Classification and Tabulation	17 Hours	Mode
	a. Application of statistics in various fields	1	Chalk Talk
	b. Collection of Data- Primary and Secondary data, Framing a Questionnaire	3	
	c. Sampling- Methods of Sampling- Classification of Sampling, Characteristics. Objects, Types- frequency Distribution	5	
	d. Cumulative Frequency Distribution	4	
	e. Tabulation- Types, Simple Problems	4	
Unit II	Diagrammatic Presentation	17 Hours	Mode
	a. Diagrammatic Presentation, Line Diagram. Bar Diagram	2	$\begin{aligned} & \hline \text { Chalk } \\ & \& \\ & \text { Talk } \end{aligned}$
	b. Pie Diagram	3	
	c. Graphic Presentation- Graphs of Frequency Distribution	4	
	d. Histogram, Frequency Polygon	4	
	e. Frequency craves, Ogives	4	
Unit III	Measures of Central Tendency	20 Hours	Mode
	a. Mean, Geometric mean, Harmonic Mean	4	Chalk Talk
	b. Median, Mode	3	
	c. Quartiles. Deciles- Merits and Demerits	4	

	d. Measures of Dispersion- Methods of Measuring Dispersion	4	
	e. Range, Inter Quartile range, Mean Deviation, standard Deviation, Co-Efficient of variation	5	
Unit IV	Measures of Skewnessand Correlation	18 Hours	Mode
	a.Skewness - Meaning - Measures of Skewness	5	Chalk Talk
	b. Karl Person's Co-efficient of Skewness	3	
	c.Bowley's Co-efficient of Skewness.	4	
	d.Correlation	3	
	e.Rank correlation	3	
Unit V	Index Numbers	18 Hours	Mode
	a. simple Aggregate Method, Sampling Average of Price Relatives	4	Chalk Talk
	b. Weighted Index Number- Laspeyre's	4	
	c. Bowler's Fischer's and Marshall	3	
	d. Edgeworth Index Number- Test of Consistency of Number	4	
	e. Is Fischer's index number an ideal index number.	3	

Course designed by Mr. G. Ranjith kanna

Programme	BBA	Programme Code	UMA		
Course Code	20UMAA42	Number of Hours/Cycle	6		
Semester	IV	Max. Marks	100		
Part	III	Credit	4		
Allied Course					
Course Title	Business Mathematics	L	T	P	
Cognitive Level	Up to K3	90	-	-	

L-Lecture Hours, T-Tutorial Hours, P-Practical Hours
Preamble
This course provides a basic mathematical skills which needs to understand, an analyze and solve the mathematical problems encountered in business and finance

.Unit I	Set Theory	$\mathbf{1 7}$ Hours
	Set Definition- Operations on sets- Venn diagram- Laws of Sets- Verification of Laws by Venn diagrams and Examples- Solving problems using set theory	
Unit II	Simple and Compound Interest	$\mathbf{1 8}$ Hours
	Simple Interest- Compound Interest- Difference between Simple Interest and Compound Interest- Discount on bills.	
Unit III	Application of Differential Calculus	$\mathbf{2 0}$ Hours
	Differentiation- Formulae- Application of derivatives- Marginal Cost- Marginal Revenue- Maxima and Minima of a	

	function	
Unit IV	Arithmetic and Geometric Progression	$\mathbf{1 8}$ Hours
	Arithmetic Progression - $\mathrm{n}^{\text {th }}$ term of AP- Sum to n terms in AP - properties of an AP - Geometric Progression - $\mathrm{n}^{\text {th }}$ term of GP - Sum to n terms in GP.	
Unit V	Matrices	$\mathbf{1 7}$ Hours
	Definitions- Types of matrix - Addition, Subtraction, Multiplication of matrices- Matrix Equations- Inverse of a Matrix- Simultaneous equations by matrix inverse method.	

Pedagogy

Classroom lectures, ICT, Participatory method of teaching, group discussion and Quiz

Text Book

1. Dr. P.R. Vittal(2004)," Business Mathematics", Margham Publications, Chennai.

Reference Books

1. J.PSingh, (2014), "Business Mathematics", Anne book Pvt. Ltd., New Delhi.
2. Mohd. Shadabkhan, (2012), "Business Mathematics", Viva Books publication, NewDelhi.
3. C.Ranganathan, (2003),"Business Mathematics", Himalayan publication

E-Resources

1. https://www.topper.com/guides/maths/sets/venn-diagrams/
2. https://www.scripd.com/doc/19613606/Applications-of-Matrices-to-Business-and-Economics
3.

https://www.pearsonhighered.com/assets/samplechapter/0/1/3/4/0134437764.pdf
4. https://math.hawaii.edu/~mchyba/documents/syllabus/Math499/extracredit.pdf

Course Outcome

After completion of this course, the students will be able to:

CO1	Draw and use Venn diagrams to solve real problems in business
CO2	various mathematical applications in business
CO3	use derivatives in marginal analysis and application of differential calculus to find the maxima and minima of a function
CO4	solve problems in Arithmetic Progression and Geometric Progression
CO5	perform elementary matrix operations and use the concept of matrices in business decision making.

Mapping of Course Outcomes (COs) with Programme Specific Outcomes

	PS O 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8	PSO 9	PS O 10	PS O 11	PS O 12
CO 1	3	3	1	1	1	1	1	1	1	1	1	1
CO 2	2	2	1	2	1	1	1	1	1	1	1	1

CO 3	2	2	1	1	1	1	1	1	1	1	1	1
CO 4	3	2	2	1	1	1	1	1	1	1	1	1
C 0 5	3	3	2	1	1	1	1	1	1	1	1	1

3. High; 2. Moderate; 1. Low

Articulation Mapping - K Levels with Course Outcomes (COs)

Units	COs	K-Level	$\begin{gathered} \hline \text { Section A } \\ \hline \text { MCQs } \end{gathered}$		Section B Either/ or Choice	Section C
			No. of Questions	K- Level	No. of Questions	No. of Questions
1	CO1	Up to K3	2	K1\&K2	2(K2\&K2)	1(K3)
2	CO2	Up to K3	2	K1\&K2	2(K2\&K2)	1(K3)
3	CO3	Up to K3	2	K1\&K2	2(K2\&K2)	1(K3)
4	CO4	Up to K3	2	K1\&K2	2(K2\&K2)	1(K3)
5	CO5	Up to K3	2	K1\&K2	2(K2\&K2)	1(K3)
No of Questions to be asked			10		10	5
No of Questions to be answered			10		5	3

Marks for each Question	1		4	10
Total marks for each Section	10		20	30

K1 - Remembering and recalling facts with specific answers
K2 - Basic understanding of facts and stating main ideas with general answers
K3 - Application oriented - Solving problems

Distribution of Section - wise Marks with K Levels

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (Open Choice)	Total Marks	\% of Marks without Choice
K1	5	-	-	5	5%
K2	5	40	-	45	45%
K3	-	-	50	50	50%
Total Marks	10	40	50	100	100%

Lesson Plan

$\begin{gathered} \text { Unit } \\ \text { I } \end{gathered}$	Set Theory	17 Hours	Mode
	a.Set Definition and Types of Sets	2	Chalk \& Talk
	b. Operations on sets	2	
	c.Venn diagram	3	
	d.Laws of Sets	3	
	e.Verification of Laws by Venn diagrams and Examples and Solving problems using set theory	7	
Unit II	Simple and Compound Interest	18 Hours	Mode
	a.Simple Interest	4	Chalk \& Talk
	b. Compound Interest	5	
	c.Difference between Simple Interest and Compound Interest	3	
	d.Discount on bills.	6	
$\begin{gathered} \text { Unit } \\ \text { III } \end{gathered}$	Application of Differential Calculus	20 Hours	Mode
	a.Differentiation \& Formulae	2	Chalk \& Talk
	b.Application of derivatives	5	
	c.Marginal Cost	4	

	d.Marginal Revenue	4	
	e.Maxima and Minima of a function	5	
$\begin{gathered} \text { Unit } \\ \text { IV } \end{gathered}$	Arithmetic and Geometric Progression	18 Hours	Mode
	a.Arithmetic Progression	2	Chalk \& Talk
	b. $\mathrm{n}^{\text {th }}$ term of AP and Sum to n terms	5	
	c.properties of an AP	2	
	d.Geometric Progression	3	
	e. $\mathrm{n}^{\text {th }}$ term of GP and Sum to n terms	6	
$\begin{aligned} & \text { Unit } \\ & \text { V } \end{aligned}$	Matrices	17 Hours	Mode
	a Matrix, Definitions \& Types of Matrix	3	Chalk \& Talk
	b.Addition, Subtraction, Multiplication of matrices	4	
	c.Matrix Equation	3	
	d.Inverse of Matrix	3	
	e.Simultaneous equations by matrix inverse method	4	

Course designed by Mrs .A. Theeba

Programme	 B. Sc IT	Programme Code	UMA		
Course Code	20UMAA33	Number of Hours/Cycle	4		
Semester	III	Max. Marks	100		
Part	III	Credit	4		
Allied Course					
Course Title	Numerical Methods		L	T	P
Cognitive Level	Up to K3		60	-	-

L-Lecture Hours, T-Tutorial Hours, P-Practical Hours

Preamble

The course deals with the methods of solving transcendental and algebraic equations, system of linear algebraic equations. Evaluation of definite integrals and solving initial value problems are dealt with iterations

Unit I	Algebraic and Transcendental Equations:	$\mathbf{1 0}$ Hours
	Introduction - Iteration method - Bisection method -Regula Falsi method - Newton- Raphson method	

Unit II	Simultaneous Equations:	$\mathbf{1 2}$ Hours
	Introduction - Gauss Elimination method-Gauss - Jordan Elimination method - Inverse of a matrix Iterative methods: Gauss-Jacobi Iteration method - Gauss- seidal iteration method.	
Unit III	Interpolation:	$\mathbf{1 4}$ Hours
	Introduction - Newton's interpolation formulae Central difference interpolation formulae: Gauss Forward, Gauss Backward, Lagrange's interpolation formulae - Inverse interpolation	
Unit IV	Numerical differentiation \& integration:	$\mathbf{1 2}$ Hours
	Introduction - Derivatives using Newton's forward difference and Newton backward difference formula Trapezoidal rule - Simpson's one third rule - Simpson's 3/8 rule.	
Unit V	Numerical solution of ordinary differential equations:	$\mathbf{1 2}$ Hours
	Taylor's series method - Euler's method - Runge-kutta method of second, third, fourth order	

Pedagogy

Classroom lectures, ICT, Participatory method of teaching ,group discussion and Quiz.

Text Book

1. Arumugam.S, ThangapandiIssac. A, Somasundaram A (2014) Second edition "NUMERICAL METHODS", SCITECH Publications India PVT Limited.

Reference Books

1. SingaraveluA,(2008)," Numerical Methods", Published by Meenakshi Agency.
2. Veerarajan T, (2007), "Numerical Methods" Sigma series, Tata McGraw-Hill Education
3. Jain M.K., Iyengar. S.R.K and Jain R. K, 2018, "Numerical Methods for Scientific and Engineering Computation", Sixth Edition, New Age International Publishers, New Delhi.

E-Resources

1. https://ocw.mit.edu/courses/mathematics/18-330-introduction-to-numerical-analysis-spring-2012/lecture-notes/MIT18_330S12_Chapter3.pdf
2. https://www.coursera.org/courses?query=numerical\ analysis\&page=1
3.https://www.mooc-list.com/tags/numerical-analysis
4.https://github.com/numerical-mooc/numerical-mooc
5.https://nm.mathforcollege.com/topics/textbook_index.html

Course Outcomes

After completion of this course, the students will be able to:

CO1	Solve Transcendental and system of liner algebraic equations using iteration.
CO2	Develop problems solving skills using Direct methods and Iterative Methods.
CO3	Explain Lagrange and Newton's Interpolations and Central difference interpolation Procedure.
CO4	Make use of Numerical Techniques to find the derivative at a point and evaluate definite integrals.
CO 5	Solve Problems in Numerical solution of Ordinary differential equations. .

Mapping of Course Outcomes (COs) withProgramme Specific Outcomes for B.Sc.,(Computer Science)

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8	PSO 9	PS O 10	PS O 11	PS O 12
CO 1	2	2	2	1	-	-	-	-	-	-	-	-
CO 2	3	2	2	-	-	-	-	-	-	-	-	-
CO 3	3	2	2	1	-	-	-	-	-	-	-	-
CO 4	2	2	1	-	-	-	-	-	-	-	-	-
C0 5	2	2	2	-	-	-	-	-	-	-	-	-

3-High 2-Moderate 1-Low
Mapping of Course Outcomes (COs) withProgramme Specific Outcomes for B.Sc.,(Information Technology)

	PS O 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8	PSO 9	PS O 10	PS O 11	PS O
CO 1	1	1	2	2	3	2	1	1	1	1	1	1
CO 2	1	1	3	2	2	1	1	1	2	1	1	1
CO 3	1	1	3	2	2	1	1	1	1	1	1	1
CO 4	1	1	3	2	3	1		1	1	1	1	1
C0 5	1	1	3	2	3	2	1	1	1	1	1	1

3-High 2-Moderate 1-Low
Articulation Mapping - K Levels with Course Outcomes (COs)

Units	$\begin{gathered} \mathrm{CO} \\ \mathrm{~s} \end{gathered}$	K-Level	Section A MCQs		Section B Either/ or Choice No. of Question	Section C Open Choice No.of Questions
			No. of Questions	$\begin{aligned} & \hline \text { K- } \\ & \text { Level } \end{aligned}$		
1	$\begin{aligned} & \hline \text { CO } \\ & 1 \end{aligned}$	Up to K3	2	K1\&K2	2(K2, K2)	1(K3)
2	$\begin{aligned} & \hline \mathrm{CO} \\ & 2 \end{aligned}$	$\begin{array}{ll} \hline \text { Up } & \text { to } \\ \text { K3 } & \end{array}$	2	K1\&K2	2(K2, K2)	1(K3)
3	CO	Up to K3	2		2(K2, K2)	1(K3)

	3		K1\&K2			
4	CO 4	Up to K3	2	K1\&K2	2(K2, K2)	$1(\mathrm{~K} 3)$
5	CO 5	Up to K3	2	K1\&K2	2(K2, K2)	$1(\mathrm{~K} 3)$
No of Questions to be asked	10		10	5		
No of Questions to be answered	10		5	3		
Marks for each Question					1	
Total marks for each Section	10		20	10		

K1 - Remembering and recalling facts with specific answers
K2 - Basic understanding of facts and stating main ideas with general answers
K3 - Application oriented - Solving problems

Distribution of Section - wise Marks with K Levels

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (Open Choice)	Total Mark s	\% of Marks without Choice	Consolidate d (Rounded off)
K1	5	-	-	5	5%	5%
K2	5	40	-	45	45%	45%
K3	-	-	50	50	50%	50%
Total Marks	10	40	50	100	100%	100%

Lesson Plan

Unit I	Algebraic and Transcendental Equations	10 Hours	Mode
	a. Introduction	1	Chalk and Talk
	b. Iteration method	2	
	c. Bisection method	2	
	d. Regula Falsi method	2	
	e. Newton- Raphson's method	3	
Unit II	Simultaneous Equations	12 Hours	Mode
	a. Introduction	1	Chalk
	b. Gauss Elimination method	2	

	c. Gauss - Jordan Elimination method	2	and Talk
	d. Inverse of a matrix	2	
	e. Gauss-Jacobi Iteration method - Gauss-seidal iteration method	5	
Unit III	Interpolation	14 Hours	Mode
	a. Introduction	1	Chalk and Talk
	b. Newton's interpolation formulae	3	
	c. Central difference interpolation	6	
	d. Lagrange's interpolation formulae	2	
	e. Inverse interpolation	2	
$\begin{aligned} & \text { Unit } \\ & \text { IV } \end{aligned}$	Numerical differentiation \& integration	12 Hours	Mode
	a. Introduction	1	Chalk and Talk
	b. Derivatives using Newtons forward difference and Newton backward difference formula	4	
	c. Trapezoidal rule	2	
	d. Simpson's one third rule	2	
	e. Simpson's 3/8 ${ }^{\text {th }}$ rule	3	
Unit V	Numerical solution of ordinary differential equations	12 Hours	Mode
	a. Taylor's series method	2	Chalk and Talk
	b. Euler's method	2	
	c. Runge-kutta method of secondorder	3	
	d. Runge-kutta method of third order	2	
	e. Runge-kutta method of fourth order	3	

Course designed by Mrs. G.A.Pradheepa , Mrs. M.Devi Priya

Programme	B.Sc., CS \& IT	Programme Code	UMA
Course Code	20UMAA43	Number of Hours/Cycle	4
Semester	IV	Max. Marks	100
Part	III	Credit	4
Allied Course			
Course Title	Quantitative Aptitude		
Cognitive Level	Up to K3		

Preamble

The course provides various mathematical aptitude techniques of solving problems in Percentages, Profit and Loss, Simple and compound interest etc.

Unit I	Numbers	12 Hours
	Numbers - HCF and LCM of Numbers - Decimal Fractions.	
Unit II	Square roots and Cube roots	12Hours
	Square roots and Cube roots - Average - Problems on Numbers - Problems on Ages.	
Unit III	Percentage	$\mathbf{1 4}$ Hours
	Percentage - Profit and Loss - Ratio and Proportion.	
Unit IV	Time and Works	11Hours
	Time and Works - Time and Distance - Calendar.	
Unit V	Simple and Compound Interest	$\mathbf{1 1}$ Hours
	Simple Interest - Compound Interest - Logarithms.	

Pedagogy

Classroom lectures, ICT, Participatory method of teaching, group discussion and Quiz

Text Book

1.R.S.Aggarwal, (2011), "Quantitative Aptitude", S.Chand\& Company Ltd., Reference Books

1. R.V.Praveen, (2013), "Quantitative Aptitude and reasoning" ,2nd Edition,, PHI Learning.
2.M.Tyra,(2011), "Magical book on Quicker Maths", Delhi ,BSC Publishing Co.Pvt.Ltd.
2. AbhijitGuha, (2003),"Quantitative Aptitude for Competitive Exams", (4th Edition),New Delhi, McGraw Hill Company.

E-Resources

1.https://www.quora.com
2.https://www.qsleap.com > cat > resources >
3. https://www.greatlearning.in

After completion of this course, the students will be able to:

CO1	Formulatethe problem quantitatively and recall appropriate arithmetical methods to solve the problem
CO2	Demonstrate the various principles involved in solving mathematical problems.
CO3	Solve the problems in Percentage, Profit and Loss and Ratio and Proportion.

CO4	Solve the problems in Time and Works ,Time and Distance and Calendar
CO5	Acquire knowledge of solving problems in Simple and Compound InterestandLogarithms.

Mapping of Course Outcomes (COs)
with Programme Specific Outcomes for B.Sc.,(Computer Science)

	PS											
O	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8	PSO 9	PS O	PS O	PS O	
CO 1	3	1	0	0	1	2	1	0	3	0	0	0
12												
CO 2	3	2	0	0	1	2	1	0	3	0	0	0
CO 3	3	2	0	0	1	2	1	0	3	0	0	0
CO 4	3	2	0	0	1	2	1	0	3	0	0	0
CO 5	2	2	0	0	1	2	1	0	3	0	0	0

3. High; 2. Moderate; 1. Low

Mapping of Course Outcomes (COs) withProgramme Specific Outcomes for B.Sc.,(Information Technology)

$\begin{array}{r} \hline \text { PSO } \\ 1 \end{array}$	PSO2	$\begin{gathered} \mathrm{PSO} \\ 3 \end{gathered}$	PSO 4	$\begin{gathered} \hline \text { PSO } \\ 5 \end{gathered}$	$\begin{gathered} \mathrm{PSO} \\ 6 \end{gathered}$	$\begin{gathered} \hline \text { PSO } \\ 7 \end{gathered}$	$\begin{gathered} \hline \text { PSO } \\ 8 \end{gathered}$	$\begin{gathered} \mathrm{PSO} \\ 9 \end{gathered}$	$\begin{gathered} \hline \text { PSO } \\ 10 \end{gathered}$	$\begin{gathered} \hline \mathrm{PS} \\ \mathrm{O} \\ 11 \end{gathered}$	$\begin{gathered} \hline \text { PSO } \\ 12 \end{gathered}$
1	0	1	2	0	2	0	0	2	0	0	1
1	0	1	2	0	2	0	0	2	0	0	1
1	0	1	2	0	2	0	0	2	0	0	1
1	0	1	2	0	2	0	0	2	0	0	1
1	0	1	2	0	2	0	0	2	0	0	1

3.High; 2. Moderate; 1. Low;

Articulation Mapping - K Levels with Course Outcomes (COs)

Units	COs	K-Level	Section A		Section B	Section C
			MCQs		Either/ or	Open choice
			No. of Questions	K- Level	No. of Questions	No. of Questions
1	CO1	Up to K3	2	K1\&K2	2(K2\&K2)	1(K3)
2	CO2	Up to K3	2	K1\&K2	2(K2\&K2)	1(K3)
3	CO3	Up to K3	2	K1\&K2	2(K2\&K2)	1(K3)
4	CO4	Up to K3	2	K1\&K2	2(K2\&K2)	1(K3)
5	CO5	Up to K3	2	K1\&K2	2(K2\&K2)	1(K3)
No of Questions to be asked			10		10	5
No of Questions to be answered			10		5	3
Marks for each Question			1		4	10
Total marks for each sSection			10		20	30

K1 - Remembering and recalling facts with specific answers
K2 - Basic understanding of facts and stating main ideas with general answers
K3 - Application oriented - Solving problems

Distribution of Section - wise Marks with K Levels

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (Open Choice)	Total Marks	\% of Marks without Choice	Consolidate d (Rounded off)
K1	5	-	-	5	5	5%
K2	5	40	-	45	45	45%
K3	-	-	50	50	50	50%
Total Mark s	10	40	50	100	100	100%

Lesson Plan

Unit I	Numbers	12 Hours	Mod e
	a.Numbers	5	Chal Talk
	b.HCF and LCM of Numbers	4	
	c.Decimal Fractions	3	
Unit II	Square roots and Cube roots	12 Hours	Mod e
	a.Square roots and Cube root	3	Chal Talk
	b.Average	2	
	c.Problems on Numbers	4	
	d.Problems on Ages	3	
Unit III	Percentage	12 Hours	Mod e
	a.Percentage	5	Chal Talk
	b.Profit and Loss	6	
	c.Ratio and Proportion	3	
Unit IV	Time and Works	12 Hours	Mod e
	a. Time and Works	4	Chal Talk
	b.Time and Distance	4	
	c.Calendar	3	
Unit V	Simple and Compound Interest	12 Hours	Mod e
	a.Simple Interest - Compound Interest Logarithms.	4	Chal Talk
	b.Compound Interest	4	
	c.Logarithms	3	

Course designed by Mrs. A. Theeba

Value Added Courses

Programme	B.Sc.(Mathematics)	Programme Code	UMA
Course Code	20CMAT31	No. of Hrs per cycle	1
Semester	III	Max. Marks	100
Part	-	Credit	1
Value Added Course I			
Course Title	Developing Quantitative Aptitude - I		
Cognitive level - Up to K3			

Preamble

This course will enable the students to develop their quantitative skills that strengthen their edge over others in competitive examinations.

Unit I		6 Hours
	Applications of Decimal fractions in competitive examinations	
Unit II		6 Hours
	Simplification problems in competitive examinations	
Unit III		6 Hours
	Partnership problems in competitive examinations	
Unit IV		6 Hours
	Alligation and mixture problems in competitive examination	
Unit V		Hours ${ }^{6}$
	Odd man out series - True Discount problems in competitive examinations	

Pedagogy

Class Room lectures, ICT , Participatory method of teaching, Group discussion and Quiz Text Book

1. Aggarwal R.S. Quantitative Aptitude, S.chand \& company Ltd., 2011

Unit I: Chapters 3
Unit II: Chapters 4
Unit III: Chapters 13
Unit IV: Chapters 20
Unit V: Chapters 32,35.

Reference Book

1.Aggarwal R.S (2005) Quantitative Aptitude For Competitive Examinations, $3^{\text {rd }}$ edition, Tata McGraw Hill.

Course designed by Dr. S. Ramachandran

Programme	B.Sc.(Mathematics)	Programme Code	UMA

Course Code	20CMAT41	No. of Hrs per cycle	1
Semester	IV	Max. Marks	100
Part	-	Credit	1
Value Added Course II			
Course Title	Developing Quantitative Aptitude - II		
Cognitive level - Up to K3			

Preamble

This course will enable the students to develop their quantitative skills that strengthen their edge over others in competitive examinations.

Unit I		$\mathbf{6}$ Hours
	Surds and Indices problems in competitive examinations	
Unit II		$\mathbf{6}$ Hours
	Pipes and cistern problems in competitive examinations	
Unit III	Boats and Streams problems in competitive examinations	$\mathbf{6}$ Hours
Unit IV	Heights and distances problems in competitive examinations	$\mathbf{6}$ Hours
	Chain Rule (direct and inverse variation) problems in competitive examinations	
Unit V		

Pedagogy

Class Room lectures, ICT , Participatory method of teaching, Group discussion and Quiz Text Book

1. Aggarwal R.S. (2006) Quantitative Aptitude, S.chand \& company Ltd.,

Unit I: Chapters 9
Unit II: Chapters 16
Unit III: Chapters 19
Unit IV: Chapters 34
Unit V: Chapters 14

Reference Book

1. Aggarwal R.S (2005) Quantitative Aptitude For Competitive Examinations, $3^{\text {rd }}$ edition, Tata McGraw Hill.

Course designed by Dr. C. Subramani

| Programme | B.Sc Mathematics | Programme Code | UMA | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Course Code | 20UMAC51 | Number of
 Hours/Cycle | 5 | |
| Semester | V | Max. Marks | 100 | |
| Part | III | Credit | 5 | |
| | | | | |
| Course Title | Discrete Algebraic Structures | L | T | P |
| Cognitive Level | Up to K3 | 75 | - | - |

L-Lecture Hours, T-Tutorial Hours, P-Practical Hours

Preamble

To have basic concept of groups, types of groups, Rings and to make the students familiar with discrete structure and it induce analytical thinking towards developing Programming skills.

Unit I	Groups - subgroups - cyclic \& Per mntation groups	15 Hours
	(Groups - definition - properties - problems - Functions and Relations - Groups Basics Not for semester) -Subgroups- Definitions, Examples- Theorems on Subgroups- Permutation Groups- Cycles and Transpositions- Even Permutations- Theorems on Permutations - S_{n} and A_{n} - Cyclic Groups- Definitions, Examples, Theorems- Order of an element- GeneratorsNumber of Generators of cyclic groups	
Unit II	Cosets - Normal, subgroups \& Qnotient groups	15 Hours
	Cosets- Theorems on cosets, Lagrange’s theorem, Problems using Lagrange's theorem- Euler's, Fermat's TheoremsNormal Subgroups- Theorems on Normal subgroupsQuotient group	
Unit III	Homomorphism on Groups \& Cayley's Theorem	15 Hours
	Homomorphism- Types and examples- Theorems on Homomorphism- Isomorphism - Fundamental theorem of Homomorphism- Any infinite cyclic group is isomorphic to (Z,+)- Any finite group is isomorphic to ($\mathrm{Z}_{\mathrm{n}},+$)- Cayley's theorem.	
Unit IV	Rings \& Integral Domains	15 Hours
	Rings- Definition and examples- Elementary properties-Isomorphism- Types of Rings- Integral Domains, FieldsZero divisors- Theorems on Integral Domains and fields, Characteristic of a Ring.	
Unit V	Sub rings - Ideals \& Quotient rings	15 Hours
	Sub rings- Ideals- Quotient rings- maximal and prime ideals- Field of Quotient of an Integral Domain	

Pedagogy

Classroom lectures, ICT , Participatory method of teaching ,group discussion and Quiz.

Text Book

1.Dr.S.Arumugam and A.T.Isacc (2008),Modern Algebra,Scitech Publications.

Reference Books

1. S.G.venkatachalapathy (2011),Modern Algebra,MARGHAM PUBLICATIONS,Chennai
2. Surjeet Singh (eight edition), Modern Algebra, Qazi Zameeruddin VIKAS publishing house Pvt- Ltd.
3. Paul B. Garrett (2009) , Abstract Algebra ,Chapman \&hall ICRC Taylor \& Francis Group.
4. John .B. Fraleigh (2003), A first course in Abstract Algebra , Dorling Kindersely (India) Pvt. Ltd.

E-Resources

- http://ndl.iitkgp.ac.in
- http://ocw.mit.edu
- http://mathforum.org
- https://nptel.ac.in/course.html

Course Outcomes

After completion of this course, the students will be able to:

CO1	To understand the basic concepts of groups and it's types properties of subgroups \& it's types..
$\mathbf{C O 2}$ Co	construct and classify the cosets \&Normal Subgroups and applying Lagrange's Eulers, Fermatts theorems
$\mathbf{C O 3}$	 infinite groups.
$\mathbf{C O 4}$	Acquire the knowledge of Rings - Integral domains.
$\mathbf{C O 5}$	Constructing Sub rings - Ideals Quotient rings and under solving the properties Of the field of quotient of an ID

Mapping of Course Outcomes (COs) with Programme Specific Outcomes

	PSO 1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO 10	PSO 11	PSO 12
CO 1	3	3	3	3	1	3	2	1	-	-	-	2
CO 2	3	2	3	3	1	3	2	1	-	-	-	2
CO 3	2	3	3	2	1	3	2	2	-	-	-	2
CO 4	2	3	3	3	1	2	3	1	-	-	-	3
C05	3	2	3	2	1	2	3	2	-	-	-	3

3.High; 2. Moderate ; 1. Low

Articulation Mapping - K Levels with Course Outcomes (COs)

Units	COs	K-Level	$\begin{gathered} \hline \text { Section A } \\ \hline \text { MCQs } \end{gathered}$			Section C Open Choice No. of Questions
			No. of Question s	K- Level		
1	CO1	Up to K3	2	K1 \& K1	2(K2 \& K2)	1(K3)
2	CO2	Up to K3	2	K1 \& K1	2(K2 \& K2)	1(K3)
3	CO3	Up to K3	2	K1 \& K1	2(K2 \& K2)	1(K3)
4	CO4	Up to K3	2	K1 \& K1	2(K2 \& K2)	1(K3)
5	CO5	Up to K3	2	K1 \& K1	2(K2 \& K2)	1(K3)
No of Questions to be asked			10		10	5

No of Questions to be answered	10	5	3	
Marks for each Question	1		4	10
Total marks for each Section	10		20	30

K1 - Remembering and recalling facts with specific answers
K2 - Basic understanding of facts and stating main ideas with general answers
K3 - Application oriented - Solving problems
Distribution of Section - wise Marks with K Levels

K Levels	Section (No Choice)	Section B (Either/or)	Section C (Open Choice)	Total Marks	\% of Marks without Choice	Consolidated (Rounded off)
K1	10	--	--	10	10	10
K2	--	40	-	40	40	40
K3	-	-	50	50	50	50
Total Marks	10	40	50	100	100	100%

Lesson Plan

Unit I	Groups - subgroups - cyclic \& Permutation groups	15 Hours	Mode
	j. Definition of Group	2	Chalk \& Talk
	k. Properties of the Group	2	
	1. Problems in Groups	1	
	m. Functions and Relations	1	
	n. Subgroups- Definitions, Examples	2	
	o. Theorems on Subgroups	2	
	p. $\begin{array}{l}\text { Permutation Groups Cycles and } \\ \text { Transpositions }\end{array}$	2	
	q. Even Permutations- Theorems on Permutations	2	
	r. Theorems	1	
Unit II	Cosets - Normal, subgroups \& Qnotient groups	15 Hours	Mode
	1. Cosets- Theorems on cosets	2	Chalk \& Talk
	m. Lagrange's theorem	1	
	n. Problems using Lagrange's theorem	2	
	o. Euler's, Fermat's Theorems- Normal Subgroups	3	
	p. Theorems on Normal subgroups	4	
	q. Quotient groups	3	
Unit III	Homomorphism on Groups \& caylen's Theorem	15 Hours	Mode
	k. Homomorphism	2	ICT
	1. Theorems on Homomorphism	3	
	m. Isomorphism	2	
	n. Fundamental theorem of Homomorphism	2	
	o. Any infinite cyclic group is isomorphic to (Z,+), Problems	3	
	p. Any finite group is isomorphic to $\left(\mathrm{Z}_{\mathrm{n}},+\right)$ Cayley's theorem. Problems	3	
Unit IV	Rings \& Integral Domains	15 Hours	Mode
	k. Rings	,	Chalk

	1. Definition and examples	2	\& Talk
	m. Elementary properties- Isomorphism	2	
	n. Types of Rings	2	
	o. Integral Domains, Fields	2	
	p. Zero divisors	1	
	q. Theorems on Integral Domains and fields	2	
	r. Characteristic of a Ring.	1	
Unit V	Sub rings - Ideals \& Quotient rings	15 Hours	Mode
	f. Sub rings	4	ICT
	g. Ideals	4	
	h. Quotient rings	3	
	i. maximal and prime ideals	2	
	j. Field of Quotient of an Integral Domain	2	

Course designed by: Dr. S. Ramachandran, Mrs. A.Theeba

Programme	B.Sc Mathematics	Programme Code	UMA		
Course Code	20UMAC52	Number of Hours/Cycle	5		
Semester	V	Max. Marks	100		
Part	III	Credit	5		
Core Course X					T
Course Title	Differential Equations and Laplace Transform	L	T	P	
Cognitive Level	Up to K3	75	-	-	

L-Lecture Hours, T-Tutorial Hours, P-Practical Hours

Preamble

To help students to develop skills and knowledge of standard concepts in differential equations and to create an interest in problem solving.

Unit I	Exact differential equations	15 Hours
	Exact differential equations - differential equations of first order but of higher degree-Equations solvable for p- Equations solvable-for x - Equations solvable-for y-Clairaut's form Linear Equations with constant coefficients	
Unit II	Linear equations of the second order	15 Hours
	Linear Equations with variable coefficients Equations reducible to the linear homogeneous equations -Linear equations of the second order -Complete solution given a known integral	
Unit III	Simultaneous differential equations	15 Hours
	Reduction to the normal form- Change of independent variables- Variation of parameters Simultaneous differential equations-First order and first degree	
Unit IV	Partial differential equations of the first order	15 Hours
	Solutions of $\frac{\mathrm{dx}}{\mathrm{X}}=\frac{\mathrm{dy}}{\mathrm{Y}}=\frac{\mathrm{dz}}{\mathrm{Z}}$-Partial differential equations of the first order-Derivation of partial differential equations-Lagrange method of solving linear equations	
Unit V	Laplace Transform	15 Hours
	Laplace Transforms-Theorems-ProblemsEvaluation of integrals -Inverse Laplace Transforms -Results-problems-Solving ordinary differential equation with constant coefficient and variable coefficientsSimultaneous linear equations using Laplace Transforms.	

Pedagogy

Classroom lectures, ICT , Participatory method of teaching, group discussion and

Quiz.

Text Book

1. ManickaVasagam Pillai.T.K., and Narayanan.S.(2011), "Differential equations and its applications", S.Viswanathan Publications, Chennai

Reference Book(s)

1. Dr. S.Arumugam,(2008), "Differential equations and Application", New Gamma Publications, Palayamkottai
2. Dr. Moorthy. M.B.K., Senthilvadivu. K.,Mahendran. P.,(2006), "Engineering Mathematics", VRB publishers Private Limited Chennai.
3. Dr.Singaravelu.A.,(2009), "Engineering Mathematics-I", Meenakshi Agency, Chennai.

E-resources

IIT Lectures, UGC Gyan Dharshan videos
http://ndl.iitkgp.ac.in
http://ocw.mit.edu
http://mathforum.org
https://nptel.ac.in/course.html

Course Outcomes

After completion of this course, the students will be able to:

CO 1	Applying different techniques to solve exact differential equation and stating main ideas of equation solvable for x, y and p
CO 2	Solve problems in linear equations with variable co-efficients and equations reducible to homogeneous equations
CO 3	Identify variation of parameter and applying techniques to solve simultaneous equation
CO 4	Develop various methods to solve problems in partial differential equations
CO 5	Utilize different technique of Laplace transforms to solve differential equation with constant and variable co-efficients

Mapping of Programme specific outcomes with Course Outcomes

| | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 | PSO7 | PSO8 | PSO9 | PSO10 | PSO11 | PSO12 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CO1 | 3 | 3 | 1 | 3 | 2 | 3 | 3 | 1 | 1 | 1 | 1 | 2 |
| CO2 | 3 | 2 | 2 | 2 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 |
| CO3 | 3 | 3 | 2 | 2 | 1 | 3 | 2 | 1 | 1 | 1 | 1 | 1 |
| CO4 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 2 |
| CO5 | 3 | 3 | 2 | 3 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 2 |

Units		K-Level	Section A		Section B Either/ or Choice	Section C Open Choice
	COs					
			MCQs			
			No. of Questions	K- Level	No. of Questions	No. of Questions
1	CO1	Up to K3	2	K1\&K2	2(K2 \&K2)	1(K3)
2	CO2	Up to K3	2	K1\&K2	2(K2\& K2)	1(K3)
3	CO3	Up to K3	2	K1\&K2	2(K2\& K2)	1(K3)
4	CO4	Up to K3	2	K1\&K2	2(K2\& K2)	1(K3)
5	CO5	Up to K3	2	K1\&K2	2(K2\& K2)	1(K3)
No of Questions to be asked			10		10	5
No of Questions to be answered			10		5	3
Marks for each Question			1		4	10
Total marks for eachSection			10		20	30

K1 - Remembering and recalling facts with specific answers
K2 - Basic understanding of facts and stating main ideas with general answers
K3 - Application oriented - Solving problems

Distribution of Section-wise Marks and K

Levels

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (Open Choice)	Total Marks	Consolidated (Rounded off)
K1	5	--	--	5	5%
K2	5	40	--	45	45%
K3	--	--	50	50	50%
Total Marks	10	40	50	100	100%

Lesson Plan

Unit	Lesson Plan	Hours	Mode
I	a.Exact differential equations	3	Lecture (Chalk \&Talk)PPTICTGroup discussionQuiz
	b.Differential equations of first order but of higher degree	2	
	c.Equations solvable for p	2	
	d.Equations solvable-for x	2	
	e.Equations solvable-for y	2	
	f.Clairaut's form Linear Equations with constant coefficients	4	
II	a. Linear Equations with variable coefficients	4	Lecture (Chalk \& Talk) ICT
	b. Equations reducible to the linear homogeneous equations	3	
	c.Linear equations of the second order	4	
	d.Complete solution given a known integral	4	
III	a.Reduction to the normal form	3	Lecture (Chalk \& Talk) PPT ICT
	b.Change of independent variables	3	
	c.Variation of parameters	3	
	d.Simultaneous differential equations-	4	
	e.First order and first degree	2	
IV	a. Solutions of $\frac{\mathrm{dx}}{\mathrm{X}}=\frac{\mathrm{dy}}{\mathrm{Y}}=\frac{\mathrm{dz}}{\mathrm{Z}}$	4	Lecture (Chalk \&Talk)PPTICTGroup discussionQuiz
	b.Partial differential equations of the first order	4	
	c.Derivation of partial differential equations-	4	
	d.Lagrange method of solving linear equations	3	
V	a.Laplace Transforms	2	 Talk) PPT ICT
	b.Theorems	2	
	c.Problems	2	
	d.Evaluation of integrals	2	
	e.Inverse Laplace Transforms Results-problems-	2	
	f.Solving ordinary differential equation with constant coefficient and variable coefficients-	2	
	g.Simultaneous linear equations using Laplace Transforms.	3	

Course designed by: Prof. N. Sakunthala

Programme	B.Sc Mathematics	Programme Code	UMA		
Course Code	20UMAA51	Number of Hours/Cycle	3		
Semester	V	Max. Marks	100		
Part	III	Credit	3		
Allied Course V					
Course Title	Numerical Methods with C	L	T	P	
Cognitive Level	Up to K3	45	-	-	

L-Lecture Hours, T-Tutorial Hours, P-Practical Hours

Preamble

This course is designed to Numerical methods with C programming to provide the necessary basic concepts of Numerical Methods and give procedures for solving numerically different kinds of problems in scientific computing.

Unit I	Introduction to C	9 Hours
	History of C - Structure of C Programs - constant - variables - data types - operators and expressions - input and output statements.	
Unit II	Conditional Statements	9 Hours
	Conditional statements: simple if, if-else, nested if-else, else-if (ladder), switch, go-to statements - Looping Statements: while, do-while and for statements - nesting of loops - introduction to array - one dimensional, two dimensional and multi dimensional arrays.	
Unit III	Numerical Solutions of Equation	9 Hours
	Algebraic and Transcendental Equations - Iteration method - Bisection method (Bolzano method) - Regula Falsi method - Newton-Raphson method - Simultaneous Equations: Gauss Elimination Method - Gauss Jordan Method - Gauss Seidel Method.	
Unit IV	Interpolation and Numerical Differentiation	
	Interpolation - Equally spaced intervals: Newton's forward and backward Formula - Unequally spaced interval: Lagrange’s Interpolation Formula - Divided differences - Newton's Divided Difference Formula - Numerical Differentiation: Newton's Forward and Backward Difference Formula	
Unit V Hours		
	Numerical Integration Trapezoidal rule - Simpson's one-third rule - Simpson's three-eighth rule - Solving Differential Equations: Euler's methods -Runge-Kunge methods: Second order Runge- Kunge method - Fourth order Runge-Kunge method.	

Pedagogy

Classroom lectures, ICT , Participatory method of teaching , group discussion and Quiz.
Text Book(s)

1. S. Arumugam, A. Thangapandi Isaac and A. Somasundaram, (2013) Numerical Analysis with Programming in C, New Gamma Publishing House, Palayamkottai.
2. Balagurusamy E, (2009), Programming in ANSI 'C', Tata McGraw Hill Publications, New Delhi.

Reference Book(s)

1. Kandasamy P, Thilagavathy K, Gunavathy K, (2012), Numerical Methods, S. Chand \& Sons Company, New Delhi.
2. Jain M K, Iyengar S R K, Jain R K, (2012), Numerical Methods for Science and Engineering Computations $6^{\text {th }}$ edition, New Age International Publishers.
3. Sastry S.S, (2009), Introductory Methods of Numerical Analysis, (2008), Meenakshi Agency, Chennai.

E-Resources

1. http://www.math.iitb.ac.in/~baskar/book.pdf
2. https://www.math.ust.hk/~machas/numerical-methods.pdf
3.http://www.cse.iitm.ac.in/~vplab/downloads/opt/Applied\ Numerical \%20Analysis.pdf
4.http://www.ikiu.ac.ir/public-files/profiles/items/090ad_1410599906.pdf

Course Outcomes

After completion of this course, the students will be able to:

CO	Understand basic data structures and to develop logics which will help them to
1	create well-structured programs using C language.
CO	Knowledge of Operators, Data types, Array, Functions and can develop
2	programs in C language.
CO	Obtain approximate solutions of algebraic and transcendental equations and
3	Solve simultaneous linear equations.
CO	Derive Numerical methods of various mathematical operations and tasks, such as
4	Interpolation and Numerical Differentiation.
CO	Develop and apply Numerical Integration and Solve ordinary differential
5	equations numerically using single and multi-step methods.

Mapping of Course Outcomes (COs) with Programme Specific Outcomes

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO 10	PSO 11	PSO 12
CO 1	3	2	3	3	1	3	1	3	-	-	-	2
CO 2	3	2	3	3	1	3	1	2	-	-	-	2
CO 3	2	3	3	2	1	3	2	2	-	-	-	2
CO 4	2	3	3	3	1	2	3	1	-	-	-	3
C05	3	2	3	2	1	2	3	2	-	-	-	3

3. High; 2. Moderate; 1. Low

Articulation Mapping - K Levels with Course Outcomes (COs)

Units	COs	K-Level	Section A MCQs		Section B Either/ or Choice No. of Questions	Section C Open Choice No. of Questions 1
			No. of Questions	K- Level		
1	CO1	Up to K3	2	K1\&K1	2(K2 \&K2)	1(K3)
2	CO2	Up to K3	2	K1\&K1	2(K2\& K2)	1(K3)
3	CO3	Up to K3	2	K1\&K1	2(K2 \& K2)	1(K3)
4	CO4	Up to K3	2	K1\&K1	2(K2\& K2)	1(K3)
5	CO5	Up to K3	2	K1\&K1	2(K2\&K2)	1(K3)
No of Questions to be asked			10		10	5
No of Questions to be answered			10		5	3
Marks for each Question			1		4	10
Total marks for eachSection			10		20	30

K1 - Remembering and recalling facts with specific answers
K2 - Basic understanding of facts and stating main ideas with general answers
K3 - Application oriented - Solving problems

Distribution of Section - wise Marks with K Levels

K Levels	Section (No Choice)	Section B (Either/or)	Section C (Open Choice)	Total Marks	\% of Marks without Choice	Consolidated (Rounded off)
K1	10	-	-	10	10%	10%
K2	-	40	-	40	40%	40%
K3	-	-	50	50	50%	50%
Total Marks	10	40	50	100	100%	100%

Lesson Plan

	Introduction to C	9 Hours	Mode
	History of C	2	Chalk \& Talk
	Structure of C Programs	1	
	Constant, variables	2	
	Data types, Operators and expressions	2	
	Input and output statements	2	
Unit II c.	Conditional statements	9 Hours	Mode
	Simple if, if-else, nested if-else, else-if(ladder)	1	Chalk \& Talk
	switch, go-to statements	1	
	Looping Statements: while, do-while and for statements	2	
	nesting of loops	1	
	Introduction to array	2	
	one dimensional, two dimensional and multi dimensional arrays	2	
Unit III ${ }^{\text {d. }}$ d.	Numerical Solutions of Equation	9 Hours	Mode
	Algebraic and Transcendental Equations	1	 Talk ICT
	Iteration method	1	
	Bisection method (Bolzano method)	1	
	Regula Falsi methods	1	
e. f.	Newton-Raphson method	2	
	Simultaneous Equations: Gauss Elimination Method, Gauss Jordan Method	2	
g.	Gauss Seidel Method	1	
	Interpolation and Numerical Differentiation	9 Hours	Mode
	Interpolation, Newton's Interpolation Formula	2	 Talk ICT
	Lagrange's Interpolation Formula	2	
	Divided differences, Newton's Divided Difference Formula	2	
	Numerical Differentiation: Introduction	1	
	Derivatives using Newton’s Forward Difference Formula	1	
	Derivatives using Newton's Backward Difference Formula	1	
Unit \mathbf{V} a. b. c.	Numerical Integration	9 Hours	Mode
	Numerical Integration: Trapezoidal rule	1	 Talk
	Simpson's one-third rule	1	
	Simpson's three-eighth rule	1	

d. e.	Solving differentiak equations: Euler's methods f.Runge-Kunge methods, Second order Runge- Kunge method	$\mathbf{1}$
	Fourth order Runge-Kunge method.	$\mathbf{3}$

Course designed by: Dr. P. Pandiammal

Programme	B.Sc Mathematics	Programme Code	UMA		
Course Code	20UMAA5P	Number of Hours/Cycle	2		
Semester	V	Max. Marks	50		
Part	III	Credit	2		
Allied Practical III					
Course Title	Numerical Methods with C Programming		L	T	P
Cognitive Level	Up to K3		-	-	30

L-Lecture Hours, T-Tutorial Hours, P-Practical Hours

Preamble

To develop the computational skills of the students to solve various mathematical problems by numerical techniques using C Programming.

Course Outcome:

Students will be able to solve problems of mathematics using computers and apply their knowledge gain solving real life problems appearing in various engineering applications that are often impossible to solve using analytical techniques.

List of Experiment

1. Program to find a root of a nonlinear equation using the Method of Bisection.
2. Program to find a root of a nonlinear equation using the Method of False Position.
3. Program to find the root of a nonlinear equation using the Newton-Raphson method.
4. Program to obtain the solution of a system of linear equations using Gauss elimination method.
5. Program to obtain the solution of a system of linear equations using Gauss -Seidel method.
6. Program to construct Newton's forward difference interpolation polynomial.
7. Program to construct Lagrange's interpolation polynomial formula.
8. Program to evaluate a definite integral by Trapezoidal rule.
9. Program to evaluate a definite integral by Simpson's rule.
10. Program to find solution of initial value problem using fourth order Runge Kutta method.

Text Book

1. S. Arumugam, A. Thangapandi Isaac and A. Somasundaram, (2013) Numerical Analysis with Programming in C, New Gamma Publishing House, Palayamkottai.

Course designed by: Dr. P. Pandiammal

Programme	B.Sc Mathematics	Programme Code	UMA		
Course Code	20UMAA52	Number of Hours/Cycle	5		
Semester	V	Max. Marks	100		
Part	III	Credit	5		
Allied Course VI					
Course Title	Mathematical Statistics- I		L	T	P
Cognitive Level	Up to K3		75	-	-

L-Lecture Hours, T-Tutorial Hours, P-Practical Hours

Preamble

The course essentially deals with the probability distribution theory which is the basis of statistics. The topics covered includes Correlation and Regression and curve fitting.

Unit I	Random Variables-Distribution Functions	Hours ${ }^{15}$
	Sample space - Random Variable - Discrete random variable - Continuous random variable - Probability density function - Discrete and continuous Distribution function - Joint probability function - Related Problems.	
Unit II	Mathematical expectations and Generating Functions	15
		Hours
	Mathematical expectation- Moment generating function Charateristic function - Chebyche's inequality Bernoulli's Law of large numbers - Theorems with proof and related problems.	
Unit III	Some Special Distributions	Hours 15
	Theoretical Discrete and Continuous distributions Binomial, Poisson, Normal, Gamma, Exponential, Rectangular (Or) Uniform distributions - Standard properties and Related Problems.	
Unit IV	Correlation and Regression	Hours 15
	Correlation and regression - Introduction-Correlation-Karl perason's coefficient of correlation - Rank correlation spearman's formula for rank correlation -Regression line of y on x - Regression line of x on y . Correlation coefficient for a bivariate frequency distribution - Related problems.	
Unit V	Curve Fitting	Hours ${ }^{15}$
	Curve fitting - Principle of Least Squares - Fitting of a straight line - Fitting of a second degree parabola - Change of origin. Conversion of data to linear form - Fitting of a	

	power curve - Fitting of exponential curves - Related Problems.	

Pedagogy

Classroom lectures, ICT , Participatory method of teaching, group discussion and Quiz.

Text Book (s)

1. Arumugam. S and Thangapandi Isaac.A, (2016) Statistics, New Gamma Publications Private Limited.

Unit I: Chapter 12 (sec 12.1-12.3)
Unit II: Chapter 12 (sec 12.4-12.6)
Unit III: Chapter 13
Unit IV: Chapter 6(sec 6.1-6.4)
Unit V: Chapter 5
2.Gupta. S.C and Kapoor.V.K, Mathematical Statistics,(2008), Sultan Chand and Sons.

Unit I: Chapter 5 (sec 5.5.1-5.5.4)
Unit II: Chapter 6 (sec 6.12, 6.13, 6.13.1)
Unit III: Chapter 8 (sec 8.1, 8.3, 8.6)

Reference Book(s)

1. Dr. S.P. Gupta, Dr. M.P. Gupta (2010),Business Statistics, Sultan Chand \& Sons Educational Publishers, New Delhi
2. P.R. Vittal (2002), Mathematical Statistics, Margham Publications, Chennai.
3. Manmohan Gupta, Statistics,(2001), Sultan Chand \& Sons.

E-Resources

- http://ndl.iitkgp.ac.in
- http://ocw.mit.edu
- http://mathforum.org
- https://nptel.ac.in/course.html

Course Outcomes

After completion of this course, the students will be able to:

CO1	Identify discrete and continuous random variables.
CO2	Recall and apply a comprehensive set of Probability ideas in generating expectations.
CO3	Find, interpret and analyze the measure of central tendencies in distributions.
CO4	Determine the relationship between quantitative variables and extend regression analysis.
CO5	Fit the appropriate curve.

Mapping of Course Outcomes (COs) with Programme Specific Outcomes

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO 10	PSO 11	PSO 12
CO 1	3	2	3	2	2	2	3	2	-	-	-	2
CO 2	3	2	3	3	2	2	2	3	-	-	-	2
CO 3	3	2	3	2	2	2	3	2	-	-	-	2
CO 4	3	2	3	2	2	2	3	2	-	-	-	2
C05	3	2	3	2	1	2	3	2	-	-	-	3

3.High; 2. Moderate ; 1. Low

Units	COs	K-Level	Section A		Section B	Section C
			MCQs		Either/ or	Open
			No. of Questions	K- Level	No. of Questions	No. of Questions
1	CO1	Up to K3		K1\&K2	2(K2 \& K2)	1(K3)
2	CO2	Up to K3	2	K1\&K2	2(K2\& K2)	1(K3)
3	CO3	Up to K3	2	K1\&K2	2(K2\& K2)	1(K3)
4	CO4	Up to K3	2	K1\&K2	2(K2\& K2)	1(K3)
5	CO5	Up to K3	2	K1\&K2	2(K2\&K2)	1(K3)
No of Questions to be asked			10		10	5
No of Questions to be answered			10		5	3
Marks for each Question			1		4	10
Total marks for eachSection			10		20	30

K1 - Remembering and recalling facts with specific answers
K2 - Basic understanding of facts and stating main ideas with general answers
K3 - Application oriented - Solving problems
Distribution of Section - wise Marks with K Levels

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (Open Choice)	Total Marks	\% of Marks without Choice	Consolidated (Rounded off)
K1	5	-	-	5	5%	5%
K2	5	40	-	45	45%	45%
K3	-	-	50	50	50%	50%
Total Marks	10	40	50	100	100%	100%

Unit I	Random Variables-Distribution Functions	15 Hours	Mode
	a.Sample space, Random Variable		Chalk \& Talk
	b.Discrete random variable	2	
	c.Continuous random variable	3	
	d. Probability density function	2	
	e. Discrete and continuous Distribution function	3	
	f. Joint probability function	4	
Unit II	Mathematical expectations and Generating Functions	15 Hours	Mode
	a.Mathematical expectation	3	Chalk \&Talk
	b.Moment generating function	4	
	c. Characteristic function.	2	
	d.Chebyche's inequality	3	
	e.Bernoulli's Law of large numbers	3	
Unit III	Some Special Distributions	15 Hours	Mode
	a.Binomial distributions, Standard properties \& Related Problems	2	Chalk \& Talk ICT
	b.Poisson distribution, Standard properties \& Related Problems	2	
	c.Normal distribution, Standard properties \& Related Problems	5	
	d.Gamma distribution , Standard properties \& Related Problems	2	
	e.Exponential distribution , Standard properties \& Related Problems	2	
	f.Rectangular distribution , Standard properties \& Related Problems	2	
Unit IV	Correlation and Regression.	15 Hours	Mode
	a.Introduction-correlation.	1	Chalk \& Talk ICT
	b.Karl perason's coefficient of correlation	4	
	c. Rank correlation	1	
	d.Spearman's formula for rank correlation	3	
	e.Regression line of y on x - regression line of x on y	3	
	f.Correlation coefficient for a bivariate frequency distribution	3	
Unit V	Curve Fitting	15 Hours	Mode
	a.Curve fitting- Principle of Least Squares	2	Chalk \& Talk ICT
	b.Fitting of a straight line	2	
	c.Fitting of second degree parabola	3	
	d.Change of origin	2	
	e.Conversion of data to linear form - Fitting of a power curve	3	
	f.Fitting of exponential curves	3	

Course designed by: Dr. C. Subramani

Programme	B.Sc Mathematics	Programme Code	UMA

Course Code	20UMAE51	Number of Hours/Cycle	4		
Semester	V	Max. Marks	100		
Part	III	Credit	3		
Core Elective Course I A					
Course Title	Fourier Transformation and Z Transformation	L	T	P	
Cognitive Level	Up to K3	$\mathbf{6 0}$	-	-	

L-Lecture Hours, T-Tutorial Hours, P-Practical Hours
Preamble
To provide fundamentals of fourier transform , finite fourier transform and Z
transform and increase the problem solving skill of the students

Unit I	Fourier Integral Theorem	12 Hours
	Introduction- Dirichlets condition -Statement of Fourier integral theorem- Problems based on Fourier integral theorem-Complex form of Fourier Integrals-Fourier Sine and cosine Integrals-problems- Fourier transform-Problems	
Unit II	Fourier transform	12 Hours
	Inverse formula for Fourier transform- Problems based on Fourier transform and its inversion formula-Properties of Fourier transform-Convolution theorem- Parseval's identity	
Unit III	Sine and cosine Transforms	12 Hours
	Fourier Sine and cosine Transforms -Properties of Fourier Sine and cosine Transforms- Inversion formula- Problems based on Fourier Sine and cosine Transforms.	
Unit IV	Z transform	$\mathbf{1 2 ~ H o u r s ~}$
	Introduction-Definition of Z-transforms for Bilateral, Unilateral, Discrete value of t - Problems based on Z transform of some basic functions- Linear Property - First Shifting - Differentiation in the Z-Domain-Second shifting- -Initial and final value theorem- Simple Problems	
Unit V	Inverse z-transform	$\mathbf{1 2 ~ H o u r s ~}$
	Inverse z-transforms-Convolution Theorem -Formation of difference equations- Solution of the difference equations using Z-Transform.-Problems based on Solution of the difference equations using Z-Transform.	

Pedagogy

Classroom lectures, ICT, Participatory method of teaching, group discussion and Quiz.
Text Book

1. G.Balaji,(2007),Engineering Mathematics-III,G.Balaji Publishers,Chennai.

Reference Book(s)

1. T.Veerarajan (2011), Transform and Partial Differential equations, Tata McGraw hill Education Private limited, New Delhi.
2. Dr.B.S.Grewal (2012), Higher Engineering Mathematics, Khanna Publishers, New Delhi.
3. K.sankara Rao (1995), Introduction to Partial Differential Equations, Prentice Hall of India, New Delhi

E-Resources

- http://ndl.iitkgp.ac.in
- http://ocw.mit.edu
- http://mathforum.org
- https://nptel.ac.in/course.html

Course Outcomes

After completion of this course, the students will be able to:

CO1	Learn and apply Fourier integral theorem and Fourier sine and cosine integral to solve problems
CO 2	Apply Fourier integral theorem and Fourier sine and cosine integral to solve problems
CO 3	Understand and apply Fourier sine and cosine transforms, convolution theorem and Parsevel's identity
CO 4	Apply properties of Z -Transform and solve Problems based on Z transform of some basic functions
CO 5	Find Solution of the difference equations using Z-Transform

Mapping of Course Outcomes (COs) with Programme Specific Outcomes

	PSO1	PSO 2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO 10	PSO 11	PSO 12
CO 1	3	3	2	2	2	2	3	3	-	-	-	3
CO 2	3	3	2	2	2	3	3	2	-	-	-	3
CO 3	2	2	2	2	2	3	3	2	-	-	-	3
CO 4	3	3	2	2	2	3	3	2	-	-	-	2
C05	2	2	2	2	2	3	3	2	-	-	-	2

3.High; 2. Moderate ; 1. Low

Articulation Mapping - K Levels with Course Outcomes (COs)

Units	COs	K-Level	Section A MCQs			Section C Open Choice No. of Questions 1
			No. of Questions	K- Level		
1	CO1	Up to K3	2	K1 \& K1	2(K2\& K2)	1(K3)
2	CO2	Up to K3	2	K1 \& K1	2(K2\& K2)	1(K3)
3	CO3	Up to K3	2	K1 \& K1	2(K2\& K2)	1(K3)
4	CO4	Up to K3	2	K1 \& K1	2(K2\& K2)	1(K3)
5	CO5	Up to K3	2	K1 \& K1	2(K2\&K2)	1(K3)
No of Questions to be asked			10		10	5
No of Questions to be answered			10		5	3
Marks for each Question			1		4	10
Total marks for eachSection			10		20	30

K1 - Remembering and recalling facts with specific answers
K2 - Basic understanding of facts and stating main ideas with general answers
K3 - Application oriented - Solving problems
Distribution of Section - wise Marks with K Levels

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (Open Choice)	Total Marks	\% of Marks without Choice	Consolidated (Rounded off)
K1	10	-	-	10	10%	10%
K2	-	40	-	40	40%	40%
K3	-	-	50	50	50%	50%
Total Marks	10	40	50	100	100%	100%

Lesson Plan

Unit I	Fourier Integral Theorem	12Hours	Mode
	a. Introduction- Dirichlets condition-Statement of Fourier integral theorem	2	Chalk \& Talk ICT
	b. Problems based on Fourier integral theorem-Complex form of Fourier Integrals	4	
	c. Fourier Sine and cosine Integrals-problems	3	
	d. Fourier transform-Problems	3	
Unit II	Fourier transform	12 Hours	Mode
	a. Inverse formula for Fourier transform	2	Chalk \& Talk ICT
	b. Problems based on Fourier transform and its inversion formula	3	
	c. Properties of Fourier transform	3	
	d. Convolution theorem	2	
	e. Parseval's identity	2	
Unit III	Sine and cosine Transforms	12Hours	Mode
	a. Fourier Sine and cosine Transforms	3	Chalk \& Talk ICT
	b. Properties of Fourier Sine and cosine Transforms-	3	
	c. Inversion formula	3	
	d. Problems based on Fourier Sine and cosine Transforms	3	
Unit IV	Z transform	12 Hours	Mode
	a. Introduction-Definition of Z-transforms for Bilateral, Unilateral, Discrete value of t	2	Chalk \& Talk ICT
	b. Problems based on Z transform of some basic functions- Linear Property	3	
	c. First Shifting- Differentiation in the Z-Domain-Second shifting	4	
	d. Initial and final value theorem- Simple Problems	3	
Unit V	Inverse z-transforms	12 Hours	Mode
	a. Inverse z-transforms-Convolution Theorem	4	Chalk \& Talk ICT
	b. Formation of difference equations Solution of the difference equations using Z-Transform	4	
	c. Problems based on Solution of the difference equations using Z-Transform.	4	

Course designed by: Dr. J. Kaliga Rani

Programme	B.Sc., Mathematics	Programme Code	UMA	
Course Code	20UMAE52	Number of Hours/Cycle	4	
Semester	V	Max. Marks	100	
Part	III	Credit	$\mathbf{3}$	
Core Elective Course I B				
Course Title	Combinatorics	L	T	P
Cognitive Level	Up to K3	$\mathbf{6 0}$	-	-

L-Lecture Hours, T-Tutorial Hours, P-Practical Hours

Preamble

The course is to enable the students to understand the concepts of permutation, combination and Inclusion and Exclusion principle, recurrence relations.

Unit I	The Pigeonhole Principle	12 Hours
	The Sum Rule and the Product Rule - The Pigeonhole Principle -Solved Problems on the Sum Rule and the Product Rule - Solved Problems on the Pigeonhole Principle.	
Unit II	Permutations and Combinations	12 Hours
	Permutations and Combinations - Solved Problems on Permutations and Combinations.	
Unit III	Generating Permutations and Combinations Genclusion Principle - Solved Problems on Generalized Permutations and Combinatio ns - Solved Problems on the Inclusion - Exclusion Principle - Solved Problems on Generalized Inclusion - Exclusion Principle.	12 Hours
Unit	Ordinary and Exponential Generating Function	
IV	Ordinary and Exponential Generating Function - Solved Problems on Ordinary Generating Function - Solved Problems on Exponential Generating Function.	12 Hours
Unit V	Recurrence Relations	Recurrence Relations Solved Problems on Recurrence Relations and Associated Generating Functions.
Pedagogy		
Classroom lectures, ICT , Participatory method of teaching ,group discussion and		
Quiz.		
Text Book(s)		

1. Balakrishnan. V.K., Theory and Problems of Combinatorics, (1995), Schaum's Outline Series, Mc Grow - Hil, Inc. Singapore.

Unit I: Chapter 1 (1.1-1.3)
Unit II: Chapter 1 (1.2)
Unit III: Chapter 2 (2.1, 2.3)

Unit IV: Chapter 3 (3.1)
Unit V: Chapter 3 (3.3)

Reference Books

1. V. Krishnamurthy, Combinatorics Theory and Applications, (2000), East West Press.
2. Alan Tucker, Combinatorics, (2002), Wiley Publishers.
3. Rosen Kenneth, Discrete Mathematics and its Applications, (2007), $6^{\text {th }}$ Edition International Edition, Mc Grow Hill.

E-Resources

- http://ndl.iitkgp.ac.in
- http://ocw.mit.edu
- http://mathforum.org
- https://nptel.ac.in/course.html

Course Outcomes

After completion of this course, the students will be able to:

CO1	Relate and apply sum and product rule.
CO2	Analyze and solve problems related to Permutation and Combination.
CO3	Make use of Inclusion-Exclusion Principle to solve problems on generalized permutation and combination.
CO4	Demonstrate ordinary and exponential generating functions and Solve Problems using ordinary and exponential generating functions.
CO5	Solve Problems using Recurrence Relations.

Mapping of Course Outcomes (COs) with Programme Specific Outcomes

	PS O 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8	PSO 9	PS O P	PS O 11	PS O 12
CO 1	3	2	3	2	2	2	2	2	-	-	-	2
CO 2	3	2	3	3	2	2	2	2	-	-	-	2
CO 3	3	2	3	2	2	2	2	2	-	-	-	2
CO 4	3	2	3	2	2	2	2	2	-	-	-	3
C0 5	3	2	3	2	2	2	2	2	-	-	-	3

3.High; 2. Moderate ; 1. Low

Articulation Mapping - K Levels with Course Outcomes (COs)

Units	COs	K-Level	Section A MCQs		Section B Either/ or Choice No. of Questions	Section C Open Choice No. of Questions
			No. of Questions	K- Level		
1	CO1	Up to K3	2	K1\&K2	2(K2 \& K2)	1(K3)
2	CO2	Up to K3	2	K1\&K2	2(K2\& K2)	1(K3)
3	CO3	Up to K3	2	K1\&K2	2(K2\& K2)	1(K3)
4	CO4	Up to K3	2	K1\&K2	2(K2\& K2)	1(K3)
5	CO5	Up to K3	2	K1\&K2	2(K2\&K2)	1(K3)
No of Questions to be asked			10		10	5
No of Questions to be answered			10		5	3
Marks for each Question			1		4	10
Total marks for eachSection			10		20	30

K1 - Remembering and recalling facts with specific answers
K2 - Basic understanding of facts and stating main ideas with general answers
K3 - Application oriented - Solving problems
Distribution of Section - wise Marks with K Levels

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (Open Choice)	Total Marks	\% of Marks without Choice	Consolidated (Rounded off)
K1	5	-	-	5	5%	5%
K2	5	40	-	45	45%	45%
K3	-	-	50	50	50%	50%
Total Marks	10	40	50	100	100%	100%

Lesson Plan

Unit I	The Pigeonhole Principle	12 Hours	Mode Chalk $\&$ Talk ICT
	a. The Sum Rule and the Product Rule	1	
	b. The Pigeonhole Principle	2	
	c. Solved Problems on the Sum Rule and the Product Rule	6	
	d. Solved Problems on the Pigeonhole Principle.	3	
Unit II	Permutations and Combinations	12 Hours	Mode
	a. Permutations and Combinations	2	$\begin{gathered} \hline \text { Chalk } \\ \& \\ \text { Talk } \\ \text { ICT } \end{gathered}$
	b. Solved Problems on Permutations and Combinations	10	
Unit III	Generating Permutations and Combinations	12 Hours	Mode
	a. Generalized Permutations and Combinations	1	$\begin{gathered} \hline \text { Chalk } \\ \& \\ \text { Talk } \\ \text { ICT } \end{gathered}$
	b. The Inclusion, Exclusion Principle	1	
	c.Solved Problems on Generalized Permutations and C ombinations	3	
	d.Solved Problems on the Inclusion, Exclusion Principle	4	
	e.Solved Problems on Generalized Inclusion , Exclusion Principle.	3	
Unit IV	Ordinary and Exponential Generating Function	12 Hours	Mode
	a. Ordinary and Exponential Generating Function	2	$\begin{gathered} \hline \text { Chalk } \\ \& \\ \text { Talk } \\ \text { ICT } \end{gathered}$
	b. Solved Problems on Ordinary Generating Function	5	
	c. Solved Problems on Exponential Generating Function	5	
Unit V	Recurrence Relations	12 Hours	Mode
	a.Recurrence Relations	2	$\begin{gathered} \hline \text { Chalk } \\ \& \\ \text { Talk } \\ \text { ICT } \end{gathered}$
	b.Solved Problems on Recurrence Relations and Associated Generating Functions.	10	

Course designed by: Dr. C. Subramani

Programme	B.Sc Mathematics	Programme Code	UMA		
Course Code	20UMAE53	Number of Hours/Cycle	4		
Semester	V	Max. Marks	100		
Part	III	Credit	3		
Core Elective Course I C					
Course Title	Formal Languages and Automata Theory	L	T	P	
Cognitive Level	Up to K3	$\mathbf{6 0}$	-	-	

L-Lecture Hours, T-Tutorial Hours, P-Practical Hours

Preamble

Formal languages \& Automata theory induce the knowledge of the learners towards still on algorithm making and developing skill to construct a machine inputs the base of programming.

Unit I	Finite Automata and Regular Expressions:	12 Hours
	Finite state system - non - deterministic and deterministic finite state automation - finite automation with E-moves - Regular expressions.	
Unit II	Properties of Regular Expressions:	12 Hours
	Pumping lemma or Regular sets - closure - and other properties of Regular sets.	
Unit III	Context Free Grammars:	12 Hours
	Context free grammar - Derivation tree - Simple properties - Normal forms - Chamsky and Greibach - Normal forms.	
Unit IV	Pushdown Automata:	12 Hours
	Informal description - Definition and examples - Push down Automata - and context free languages.	
Unit V	Properties of context Free Languages:	12 Hours
	Pumping lemma for context languages - closure - other properties of context free languages.	

Pedagogy

Classroom lectures, ICT , Participatory method of teaching ,group discussion and Quiz.

TextBook

1. Trembley \& Manohar , (2000) Discrete Mathematical Structures \& Appli cations, TataMC Hill Ltd.

Reference Book(s)

1. John, Hopcroft and Jeffrey D. Ullman , (1994) Formal Languages, Automata Theory as computations, Narosa Publications, Indian Student Edition ($10^{\text {th }}$ reprint), New Delhi.
2. Rani sironmoney, Formal Languages, CLS Publications
3. Venkatraman M.K., Sridharan .N \& N. Chandrasekaran, (2000) Discrete Mathematics, National Publishing \& Co.,

E-Resources

- http://ndl.iitkgp.ac.in
- http://ocw.mit.edu
- http://mathforum.org
- https://nptel.ac.in/course.html

Course Outcomes

After completion of this course, the students will be able to:

CO 1	To Understand Finite Automata and apply formulate regular expressions.
CO 2	To Understand the Properties of regular expressions and construct the expressions.
CO 3	To Inculcate the concepts on context free grammars and formulate the expressions.
CO 4	To Understand Pushdown automata and can find the context free languages.
CO 5	To Understand and apply pumping lemma for context languages and properties in the theory of computation.

Mapping of Course Outcomes (COs) with Programme Specific Outcomes

	PS O 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8	PSO 9	PS O 10	PS O 11	PS O 12
CO 1	3	3	3	3	1	3	2	1	-	-	-	2
CO 2	3	2	3	3	1	3	2	1	-	-	-	2
CO 3	2	3	3	2	1	3	2	2	-	-	-	2
CO 4	2	3	3	3	1	2	3	1	-	-	-	3
C05	3	2	3	2	1	2	3	2	-	-	-	3

3.High; 2. Moderate ; 1. Low

Articulation Mapping - K Levels with Course Outcomes (COs)

Units	COs	K-Level	Section A MCQs		Section B Either/ or Choice No. of Question	Section C Open Choice No. of Question
			No. of Questions	K- Level		
1	CO1	Up to K3	2	K1 \& K1	2(K2 \& K2)	1(K3)
2	CO2	Up to K3	2	K1 \& K1	2(K2 \& K2)	1(K3)
3	CO3	Up to K3	2	K1 \& K1	2(K2 \& K2)	1(K3)
4	CO4	Up to K3	2	K1 \& K1	2(K2 \& K2)	1(K3)
5	CO5	Up to K3	2	K1 \& K1	2(K2 \& K2)	1(K3)
No of Questions to be asked			10		10	5
No of Questions to be answered			10		5	3
Marks for each Question			1		4	10
$\begin{array}{l}\text { Total marks for each } \\ \text { Section }\end{array}$			10		20	30

K1 - Remembering and recalling facts with specific answers
K2 - Basic understanding of facts and stating main ideas with general answers
K3 - Application oriented - Solving problems

Distribution of Section - wise Marks with K Levels

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (Open Choice)	Total Marks	\% of Marks without Choice	Consolidated (Rounded off)
K1	10	--	--	10	10	10
K2	--	40	-	40	40	40
K3	-	-	50	50	50	50
Total Marks	10	40	50	100	100	100%

Lesson Plan

Unit I	Finite Automata and Regular Expressions:	12 Hours	Mode
	a. Finite state system	2	Chalk \& Talk
	b. deterministic and deterministic finite state automation	2	
	c. non - deterministic and deterministic finite state automation	2	
	d. finite automation with E-moves	2	
	e. Regular expressions	4	
Unit II	Properties of Regular Expressions	12Hours	Mode
	a. Pumping lemma	2	Chalk \& Talk
	b. Regular sets	2	
	c. Closure	4	
	d. Regular sets	4	
Unit III	Context Free Grammars	12 Hours	Mode
	a. Context free grammar	2	ICT
	b. Derivation tree	2	
	c. Simple properties	2	
	d. Normal forms	3	
	e. Chemistry and greibach Normal forms	3	
Unit IV	Pushdown Automata	12 Hours	Mode
	a. Pushdown Automata	2	Chalk \& Talk
	b. Definition and examples Push down	2	
	c. Push down \& context free languages.	8	
Unit V	Properties of context Free Languages	12 Hours	Mode
	a. Pumping lemma	2	ICT
	b. Closure of context free languages	4	
	c. properties of context free languages	6	

Course designed by: Dr. S. Ramachandran, Mrs. P. Sathya

| Programme | B.Sc Mathematics | Programme Code | UMA | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Course Code | 20UMAC5P | Number of
 Hours/Cycle | 2 | |
| Semester | V | Max. Marks | 100 | |
| Part | III | Credit | 2 | |
| | | | | |
| Course Title Project I | Project | L | T | P |
| Cognitive Level | Up to K5 | | | |

L-Lecture Hours, T-Tutorial Hours, P-Practical Hours

Course Outcomes

Upon successful completion of this project work the student:

CO1	Will get a little exposure to the field of research in mathematics.
CO 2	Able to convert a real life problem into a mathematical model and solve it by mathematical skills
CO 3	Able to frame the hypothesis, derivations and conclusions of their mathematical model.
CO 4	Will familiarize about various applications of mathematics.

Project work

- Each faculty will be allotted a group of (3-5) students for their research project in any one of the areas of Mathematics in consultation with their guide and the Head of the Department.
- The topic/area of work will be finalized at the end of IV semester, allowing scope for the students to gather relevant literature during the vacation.
- The project report should be submitted to the Head of the Department of Mathematics through the Guide one week prior to the commencement of the summative examination.
- They shall submit three copies of their project report for valuation.
- The choice of the topic for the project can be from a wide range of subjects, but a text or topic prescribed for study should be strictly avoided.

Area of work

Differential equations, Statistics, Numerical methods, graph theory, fuzzy mathematics, Number theory.

Each project should contain the following details:

Brief introduction on the topic
Materials and Methods
Results and Discussions
Conclusion / Summary
Bibliography
The project should be at least 25 pages excluding bibliography and appendices.
The marks will be allotted on the prescribed basis as given below:

A. Continuous Internal Assessment	
Regularity	
Strength of the independent work (utilizing theory and	
methodology)	15 Marks
Total	25Marks
B. End Semester Examination (Viva Voce) Individual Presentation $\mathbf{4 0}$ Marks Answering the queries Total 30 Marks	30 Marks
$\mathbf{6 0}$ Marks	

Programme	B.Sc Mathematics	Programme Code	UMA		
Course Code	20UMAS51	Number of Hours/Cycle	2		
Semester	V	Max. Marks	50		
Part	IV	Credit	2		
Skill Based Course I					
Course Title	Trignometry and Lattice Theory	L	T	P	
Cognitive Level	Up to K3	30	-	-	

L-Lecture Hours, T-Tutorial Hours, P-Practical Hours

Preamble

To understand De'moivre's theorem, Hyperbolic function logarithm of complex number and Lattice theory which will be applied in various concepts of Mathematical Calculation.

Unit I	Application of De' Moivre's Theorem.	6 Hours
	Expression for Sin ne, Cos ne, tan ne, - Problems on it Expressions for $\sin ^{n} \theta$, and $\cos ^{n} \theta$ - Problems expressions of $\sin \theta, \cos \theta$, and $\tan \theta$ in terms of $\theta-$ problems,	
Unit II	Hyperbolic Theorems.	6 Hours
	Definition of hyperbolic function - Theorems - Properties inverse hyperbolic function - properties	
Unit III	Logarithm of a complex Number.	6 Hours
	Definition - theorems - Properties - Problems	
Unit IV	Summation of Trignometric series	6 Hours
	Difference method - Angles in arithmetic progression method - Problems	
Unit V	Lattice Theory	6 Hours
	Definition - Properties - Theorems - Types of Lattices Distributive Lattice and Modular Lattice.	

Pedagogy

Classroom lectures, ICT , Participatory method of teaching, group discussion and Quiz.

Text Books

1. S. Arumugam \& Issac, (2012), Trignometry, New Gamma, Palayamkottai.
2. S. Arumugam \& Issac, (2016) Modern Algebra, SchiTech Publications, Chennai.

Reference Book(s)

1. Manichavasagam Pillai. T.K. \& S. Narayanan(2000), Trigonometry SV Publication PVT Ltd Chennai.
2. Loney Trigonomentry. Stewart J and Lothern Redlin,(2011) Algebra and Trigonometry $3^{\text {rd }}$ Edn Brooks/cole, Cengage Learning, USA.
3. Robert F.Blitzer, Algebra and Trigonometry $5^{\text {th }}$ Edn, Pearson Education, Newyork.

Course outcomes:

CO1	To understand the concepts of De'Moivers's Theorem \& evaluate the problems.
CO2	To apply Hyperbolic expressions in the suitable.
CO3	To apply \& solve logarithm on complex number concepts.
CO4	To solve the problems on trigonometric series in AP \& GP of angles.
CO5	To understand the properties of Lattices and construct various types of Lattices.

Mapping of Course Outcomes (COs) with Programme Specific Outcomes

	PSO 1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO 10	PSO 11	PSO 12
CO 1	3	3	3	3	1	3	2	1	-	-	-	2
CO 2	3	2	3	3	1	3	2	1	-	-	-	2
CO 3	2	3	3	2	1	3	2	2	-	-	-	2
CO 4	2	3	3	3	1	2	3	1	-	-	-	3
C05	3	2	3	2	1	2	3	2	-	-	-	3

3.High; 2. Moderate ; 1. Low

Articulation Mapping - K Levels with Course Outcomes (COs)

Units	Cos	K-Level	Section A	Section B
			Either/ or Choice	Open Choice
		No. of Questions	No. of Questions	
1	CO1	Up to K2	$2(\mathrm{~K} 2 \& \mathrm{~K} 2)$	$1(\mathrm{~K} 2)$
2	CO2	Up to K3	2(K2\&K2)	$1(\mathrm{~K} 3)$
3	CO3	Up to K2	2(K2\&K2)	$1(\mathrm{~K} 2)$
4	CO4	Up to K3	$2(\mathrm{~K} 2 \& \mathrm{~K} 2)$	$1(\mathrm{~K} 3)$
5	CO5	Up to K3	$2(\mathrm{~K} 2 \& \mathrm{~K} 2)$	$1(\mathrm{~K} 3)$
No of Questions to be asked	10	5		
No of Questions to be answered	5	3		
Marks for each Question				
Total marks for each Section	3	5		

K1 - Remembering and recalling facts with specific answers
K2 - Basic understanding of facts and stating main ideas with general answers
K3 - Application oriented - Solving problems

Distribution of Section - wise Marks with K Levels

K Levels	Section (Either/or)	Section B (Open Choice)	Total Marks	\% of Marks without Choice	Consolidated (Rounded off)
K1	-	-	-	-	
K2	30	10	40	72.72%	73%
K3	-	15	15	27.27%	27%
Total Marks	30	25	55	100.00%	100%

Lesson Plan

Unit I	Application of De' Moivre's Theorem	6 Hours	Mode
	a. Expression for Sin ne, Cos ne, tan ne	2	Chalk \& Talk
	b. Problems on it Expressions for $\sin ^{\mathrm{n}} \theta$ and $\cos ^{\mathrm{n}} \theta$	1	
	c. Problems expressions of $\sin \theta, \cos \theta$, and $\tan \theta$ in terms of θ	2	
	d. Simple problems	1	
Unit II	Hyperbolic Theorems	6 Hours	Mode
	a. Definition of hyperbolic function	1	Chalk \& Talk
	b. Theorems	2	
	c. Properties	1	
	d.Inverse hyperbolic function	1	
	e.properties	1	
Unit III	Logarithm of a complex Number	6 Hours	Mode
	a.Definition	2	ICT
	b.theorems	1	
	c.Properties	1	
	d.Problems	2	
Unit IV	Summation of Trignometric series	6 Hours	Mode
	a.Definition of Summation on	2	Chalk \& Talk
	b.Difference Method	1	
	c.Angles in arithmetic progression method	1	
	d.Problems	2	
Unit V	Lattice Theory	6 Hours	Mode
	Definition and Properties	2	ICT
	Theorems and Types of Lattices	2	
	Distributive Lattice	1	
	Modular Lattice	1	

\square
Course designed by: Dr. S. Ramachandran, Mr K. Sankar

| Programme | B.Sc Mathematics | Programme Code | UMA | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Course Code | 20UMAS5P | Number of
 Hours/Cycle | 2 | |
| Semester | V | Max. Marks | 50 | |
| Part | IV | Credit | 2 | |
| Skill Based Practical I | | | | |
| Course Title | MATLAB | L | T | P |
| Cognitive Level | Up to K3 | - | - | 30 |

L-Lecture Hours, T-Tutorial Hours, P-Practical Hours

Preamble

To develop the knowledge of solving mathematical problems using MATLAB.

Course outcome

The student will be able to

- Solve mathematical and numerical problems using MATLAB.
- Solve ODE and system of equations using MATLAB.
- Work on Matrix operations and find eigen values and eigen vectors of matrix of higher order.
- Plot 2D graphs and 3D graphs.
- Use MATLAB to fit a straight line, parabola and exponential curve

List of Experiments

1. Write a MATLAB program to solve a system of equations of higher degree and solve the Linear Programming Problem.
2. Write a MATLAB program to determine addition, subtraction and multiplication of two matrices of order $4^{\times} 4$ and higher orders.
3. Write a MATLAB program to determine the transpose, inverse of a matrix of order more than 3^{\times}.
4. Write a MATLAB program to determine the eigen values and eigen vectors of matrix of higher order.
5. Write a MATLAB program to fit a straight line, parabola and exponential curve for a given data.
6. Write a MATLAB program to solve ordinary differential equation of order more than two.
7. Write a MATLAB program to evaluate single and multiple integral with the given limit.
8. Write a MATLAB program to perform union, intersection, complement and Demorgan's Law.
9. Write a MATLAB program to plot various membership functions.
10. Write a MATLAB program to create and plot 2D graphs and 3D graphs.

Text Book

Delores M. Etter, David C. Kuncicky, Holly moore (2012) Introduction to MATLAB 7 Pearson.

Reference Book

1. Palm, W. J. (2005), Introduction to MATLAB 7 for Engineers (Vol. 7). New York: McGraw-Hill.
2. Vipula singh (2012), Digital image processing with MATLAB and lab view, Elsevier First Edition.

Web References

1. https://www.youtube.com/watch?v=zJm8VHg4TbQ
2. https://www.youtube.com/watch?v=1PSFLKiEV7U

Course designed by:Dr. J. Kaliga Rani

Programme	B.Sc Mathematics	Programme Code	UMA		
Course Code	20UMAC61	Number of Hours/Cycle	6		
Semester	VI	Max. Marks	100		
Part	III	Credit	6		
Course Title	Linear Algebra	Course XI	L	T	P
Cognitive Level	Up to K3	$\mathbf{9 0}$	-	-	

L-Lecture Hours, T-Tutorial Hours, P-Practical Hours
Preamble
This Course aims at providing the Students with basic concepts of Vector spaces, Inner products spaces, Linear transformations and to enable Students to induce the skills to construct Higher powers of Matrix.

Unit I	Vector Spaces	$\mathbf{1 8}$ Hours
	Vector Spaces : Definition and examples - subspaces - Linear transformation span of a set - Linear independence - Linear dependence.	
Unit II	Basis \&Dimension of a Vector space	$\mathbf{1 8}$ Hours
	Basis and Dimension - Rank and Nullity - Matrix of a linear transformation - Theorems and problems on transforms.	
Unit III	Inner Product Spaces	$\mathbf{1 8}$ Hours
	Inner Product Spaces : Introduction - Definition and examples - Orthogonality - Orthogonal Complements .	
Unit IV	Matrices and their types \& Properties	
	Theory of Matrices: Introduction - Algebra of matrices - Types of matrices - The Inverse of a matrix - Elementary transformations - Rank of a matrix - Simultaneous linear equations.	$\mathbf{1 8}$ Hours
Unit V	 Quadratic forms	$\mathbf{1 8}$ Hours
	Characteristic equation and Cayley Hamilton theorem - Eigen values and Eigen vectors - Bilinear forms - Introduction - Bilinear forms - Quadratic forms	

Pedagagy

Classroom lectures, ICT , Participatory method of teaching ,group discussion and Quiz.

Text Book

1. S. Arumugam \& Issac (2008),Modern Algebra, Scitech Publication Chennai.

Reference Books

1. V. Krishna Moorthy ,V.P.Manira,. Introduction to Linear Algebra, J.L Arora Affiliated East - West Press Pvt Ltd
2. Ward Cheney,David Kincaid,(2010) , Linear algebra (Theory and application) Jones \& Barttet publishers India Pvt .Ltd.
3. Pramode kumar (2009),Linear algebra Dorling Kindersely (India) Pvt. Ltd.
4. Jimmie Gilbert \& Linda Gilbert Elsevier (reprint 2010) , Linear Algebra \& matrix theory , -a division of Read Elsevier Pvt. Ltd.

E-Resources

- http://ndl.iitkgp.ac.in
- http://ocw.mit.edu
- http://mathforum.org
- https://nptel.ac.in/course.html

Course Outcomes

After completion of this course, the students will be able to:

CO1	To Recalling the concept of binary operations on a set for vector space and constructing vector spaces.
CO2	To understand \& Construct the vector spaces with basis, dimensions Rank \& Nullity.
CO3	To Formulate Inner Product Spaces - Orthogonal Vectors and by Grand Schmidt orthogonalisation Process.
CO4	Acquire the knowledge on matrices \& their types and their properties.
CO5	 Calculate Eigen values \& Vector, Quadratic forms.

Mapping of Course Outcomes (COs) with Programme Specific Outcomes

	PSO 1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO 10	PSO 11	PSO 12
CO 1	3	3	3	3	1	3	2	1	-	-	-	2
CO 2	3	2	3	3	1	3	2	1	-	-	-	2
CO 3	2	3	3	2	1	3	2	2	-	-	-	2
CO 4	2	3	3	3	1	2	3	1	-	-	-	3
C05	3	2	3	2	1	2	3	2	-	-	-	3

3.High; 2. Moderate ; 1. Low

Articulation Mapping - K Levels with Course Outcomes (COs)

Units	COs	K-Level	Section A		Section B Either/ or Choice	Section C Open Choice
			MCQs			
			No. of Questions	K- Level	No. of Questions	No. of Questions
1	CO1	Up to K3	2	$\begin{array}{ll} \mathrm{K} 1 & \& \\ \mathrm{~K} 1 & \end{array}$	2(K2 \&K2)	1(K3)
2	CO2	Up to K3	2	$\begin{aligned} & \hline \text { K1 \& } \\ & \text { K1 } \end{aligned}$	2(K2 \&K2)	1(K3)
3	CO3	Up to K3	2	$\begin{aligned} & \hline \text { K1 \& } \\ & \text { K1 } \end{aligned}$	2(K2 \&K2)	1(K3)
4	CO4	Up to K3	2	$\begin{aligned} & \text { K1 \& } \\ & \text { K1 } \end{aligned}$	2(K2 \&K2)	1(K3)
5	CO5	Up to K3	2	$\begin{aligned} & \text { K1 \& } \\ & \text { K1 } \end{aligned}$	2(K2 \& K2)	1(K3)

| No of Questions to be asked | 10 | 10 | 5 |
| :--- | :--- | :--- | :--- | :--- |
| No of Questions to be
 answered | 10 | 5 | 3 |
| Marks for each Question | 1 | 4 | 10 |
| Total marks for each
 Section | 10 | 20 | 30 |

K1 - Remembering and recalling facts with specific answers
K2 - Basic understanding of facts and stating main ideas with general answers
K3 - Application oriented - Solving problems

Distribution of Section - wise Marks with K Levels

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (Open Choice)	Total Marks	\% of Marks without Choice	Consolidated (Rounded off)
K1	10	--	--	10	10%	10%
K2	--	40	-	40	40%	40%
K3	-	-	50	50	50%	50%
Total Marks	10	40	50	100	100%	100%

Lesson Plan

Unit I	Vector Spaces	18 Hours	Mode
	a.Vector Spaces : Definition and examples	3	Chalk \& Talk
	b.subspaces	2	
	c.Linear transformation span of a set	3	
	d.Linear independence	5	
	e.Linear dependence	5	
Unit II	Basis \&Dimension of a Vector space	18 Hours	Mode
	a.Basis and Dimension	5	Chalk \& Talk
	b.Rank and Nullity	2	
	c.Matrix of a linear transformation	5	
	d.Theorems and problems on transforms	6	
Unit III	Inner Product Spaces	18 Hours	Mode
	a.Inner Product Spaces	3	Chalk \& Talk ICT
	b.Definition and examples	5	
	c.Orthogonality \& Grandschmidth Theorem	5	
	d.Orthogonal Complements	5	
Unit IV	Matrices \& their types \& Properties	18 Hours	Mode
	a.Theory of Matrices: Introduction	2	Chalk \& Talk
	b.Algebra of matrices	2	
	c.Types of matrices	2	
	d.The Inverse of a matrix	2	
	e.Elementary transformations	2	
	f.Rank of a matrix	4	

	g.Simultaneous linear equations.	4	
Unit V	 Quadratic forms	$\mathbf{1 8}$ Hours	Mode
	a.Characteristic equation	3	
	b.Cayley Hamilton theorem	2	3
	c.Eigen values and Eigen vectors	Chalk	
	d.Bilinear forms	2	3
\& Talk			
	ICT		
	f.Bilinear forms	2	
	g.Quadratic forms	3	

Course designed by: Dr. S. Ramachandran, Mrs. S. Divya Priya

Programme	B.Sc Mathematics	Programme Code	UMA		
Course Code	20UMAC62	Number of Hours/Cycle	6		
Semester	VI	Max. Marks	100		
Part	III	Credit	6		
Core Course XII					
Course Title	Complex Analysis		L	T	P
Cognitive Level	Up to K3		90	-	-

L-Lecture Hours, T-Tutorial Hours, P-Practical Hours
Preamble:
To illuminate problem solving ability at various level and to introduce the concept about the elementary transformations and contour integrations.

Unit I	Analytic function	Hours	$\mathbf{1 8}$
	Analytic function- C.R equations- Sufficient conditions- Harmonic functions		
Unit II	Bilinear Transformation	$\mathbf{1 8}$	
	Elementary Transformation- Bilinear Transformation- Cross ratio- fixed points- Special Bilinear Transformation- Real axis to axis- Unit circle to unit circle and real axis to unit circle only.	Hours	$\mathbf{1 8}$
Unit III	Complex Integration	Hours	$\mathbf{1 8}$
	Cauchy's Fundamental theorem- Cauchy's integral formulae and formulae for derivatives- Morera’s theorem- Cauchy's inequality- Liouville's theorem- Fundamental theorem of algebra.	Hours	

	$\begin{aligned} & \int_{0}^{2 \pi} f(\cos \theta, \sin \theta) d \theta, \text { Type 2: } \int_{-\infty}^{\infty} f(x) d x, \text { Type 3: } \\ & \int_{-\infty}^{\infty} \frac{g(x) \cos a x}{h(x)} d x \int_{\text {or }}^{\int_{-\infty}^{\infty} \frac{g(x) \sin a x}{h(x)} d x} \end{aligned}$

Text Book

1.Dr.Arumugam. S., Thangapandi Isacc and Somasundaram.A.,(2003), "Complex Analysis",Sci tech publications(India) Private Limited, Chennai

Reference Books

1. Shanti Narayan, Dr. Mittal.P.K.,(2011), "Theory of functions of a complex variable",S.Chand \& company,New Delhi.
2. Duraipandian.P., Laxmi duraipandian, Muhilan.D.,(2001), "Complex Analysis",Emerald Publishers,Chennai
3. Manicavachagam Pillai.T.K., Dr.Rajagopalan.S.P.,

Dr.Sattanathan.R.,Viswanathan.S.,(2007),
"Complex
Analysis",S.viswanathan ,Chennai

E-resources

IIT Lectures, UGC Gyan Dharshan videos
http://ndl.iitkgp.ac.in
http://ocw.mit.edu
http://mathforum.org
https://nptel.ac.in/course.html

Course Outcomes

After completion of this course, the students will be able to:

CO 1	Solve problems in C.R equations \& Harmonic functions.
CO 2	Explain Bilinear transformations \& cross ratio
CO 3	 Fundamental theorems of Algebra
CO 4	Develop problem solving skills using Cauchy's residue
CO 5	Applying acquired knowledge in definite integral for finding poles lies on the real axis .

Mapping of Programme specific outcomes with Course Outcomes

| | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 | PSO7 | PSO8 | PSO9 | PSO10 | PSO11 | PSO12 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CO1 | 3 | 3 | 2 | 3 | 3 | 3 | 3 | 1 | 1 | 1 | 1 | 2 |
| CO2 | 3 | 2 | 3 | 3 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 |
| CO3 | 3 | 3 | 2 | 2 | 1 | 3 | 2 | 1 | 1 | 1 | 1 | 1 |
| CO4 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 2 |
| CO5 | 3 | 3 | 3 | 3 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 2 |

1-Low 2-Moderate 3-High

Units	COs	K-Level	Section A		Section B	Section C
			MCQs No. of Questions	K- Level	Either/ or Choice	No. of Questions Ohoice
	CO1	Up to K3	No. of Questions			
2	CO2	Up to K2	2	K1 \& K2	2 (K3 \& K3)	1 (K3)
2	$2($ K2 \& K2)	$1(\mathrm{~K} 2)$				

3	CO3	Up to K3	2	K1 \& K2	$2($ K3 \& K3)	1 (K3)
4	CO4	Up to K3	2	K1 \& K2	$2($ K3 \& K3)	1 (K3)
5	CO5	Up to K3	2	K1 \& K2	$2($ K2 \& K2)	$1(\mathrm{~K} 3)$
No of Questions to be asked	10		10	5		
No of Questions to be answered	10		5	3		
Marks for each Question Total marks for each Section						

K1-Remembering and recalling facts with specific answers
K2-Basic understanding of facts and stating main ideas with general answers
K3-Application oriented-Solving problems

Distribution of Section-wise Marks and K Levels

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (Open Choice)	Total Marks	Consolidated (Rounded off)
K1	5	--	--	5	5%
K2	5	16	10	31	31%
K3	--	24	40	64	64%
Total Marks	10	40	50	100	100%

Lesson Plan

Unit	Lesson Plan	Hours	Mode
I	a.Analytic function	4	Lecture (Chalk \&Talk)PPTICTGroup discussionQuiz
	b.C.R equations	5	
	c.Sufficient conditions	4	
	d.Harmonic functions	5	
II	a.Elementary Transformation - only	3	Lecture (Chalk \& Talk) ICT
	b.Bilinear Transformation	5	
	c.Cross ratio- fixed points	5	
	d.Special Bilinear Transformation	2	
	e.Real axis to axis	1	
	f.Unit circle to unit circle	1	
	g.real axis to unit circle	1	
III	a.Cauchy's Fundamental theorem	3	Lecture (Chalk \& Talk) PPT ICT
	b.Cauchy's integral formulae and formulae for derivatives	4	
	c.Morera's theorem	3	
	d.Cauchy's inequality	5	
	e.Liouville's theorem		

	f.Fundamental theorem of algebra.	3	
IV	a.Taylor's theorem	4	 Talk) PPT ICT Group discussion Quiz
	b.Laurent's theorem	4	
	c.Zeros of an analytic function		
	d.singular points	3	
	e.Poles	3	
	f.Calculus of residues	4	
V	a.Cauchy's residue theorem	3	 Talk) PPT ICT
	b.Argument principle-. Rouche's theorem	3	
	c.Evaluation of definite integral- Type 1: $\int_{0}^{2 \pi} f(\cos \theta, \sin \theta) d \theta$	4	
	d.Type 2: $\int_{-\infty}^{\infty} f(x) d x$ - No poles lies on the real axis,	4	
	e.Type 3: $\quad \int_{-\infty}^{\infty} \frac{g(x) \cos a x}{h(x)} d x$ or $\int_{-\infty}^{\infty} \frac{g(x) \sin a x}{h(x)} d x$ No poles lies on the real axis	4	

Course designed by: Prof. N. Sakunthala

Programme	B.Sc Mathematics	Programme Code	UMA		
Course Code	20UMAA61	Number of Hours/Cycle	5		
Semester	VI	Max. Marks	100		
Part	III	Credit	5		
Allied Course VII					T
Course Title	Graph Theory	L	T	P	
Cognitive Level	Up to K3	75	-	-	

L-Lecture Hours, T-Tutorial Hours, P-Practical Hours

Preamble

This course deals with the Graph theoretical concepts connectivity, planarity and coloring that help to model real life situations.

Unit I	Graphs	Hours	$\mathbf{1 5}$
	Basics - Graphs - Pictorial representation - Subgraphs - isomorphism and degrees - Walk and connected graphs - Cycles in graphs - cut-vertices and cut-edges.		
Unit II	Eulerian and Hamiltonian graphs	Hours	$\mathbf{1 5}$
	Eulerian, Hamiltonian graphs - Eulerian graphs - Fleury's algorithm - Hamiltonian graphs - Weighted graphs.		
Unit III	Bipartite graphs	Hours	$\mathbf{1 5}$

	Bipartite graphs - Marriage Problem - Trees - Connector Problem - Kruskal's Algorithm - Prim's Algorithm	
Unit IV	Matrix and Planar graphs	Hours

Pedagogy

Classroom lectures, ICT , Participatory method of teaching ,group discussion and Quiz.

Text Book

1.S. A. Choudum, (1987), A First Course in Graph Theory, Macmillan India Ltd., Mumbai

Reference Book

1. S. Arumugam, S. Ramachandran, (2007), Invitation to Graph Theory, Scitech Publications Pvt. Ltd., Chennai.
2. S. Kumaravelu, Susila Kumaravelu (1999), Graph Theory, SKV Publications, Nagar Koil.
3. M. Murugan, (2000), Graph Theory and Algorithms, Muthali Publishing House, Chennai.

E-Resources

1. //nptel.ac.in/courses/111/106/111106050/
2. https://www.britannica.com/topic/graph-theory

Course Outcomes

After completion of this course, the students will be able to:

CO1	Understand and apply the basic concepts of Graph.
CO2	Construct algorithm by using Euler and Hamiltonian graphs.
CO3	Explain Bipartite graphs and trees \& develope Algorithms.
CO4	Apply Matrix representation in graphs and Classify the planar graphs.
CO5	Utilize algorithms in coloring of graphs.

Mapping of Course Outcomes (COs) with Programme Specific Outcomes

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO 10	PSO 11	PSO 12
CO 1	3	3	3	3	2	3	2	1	-	-	-	2
CO 2	3	2	3	3	2	3	2	1	-	-	-	2

CO 3	2	3	3	2	2	3	2	2	-	-	-	2
CO 4	3	3	3	3	2	2	3	1	-	-	-	3
C 05	3	2	3	2	2	2	3	1	-	-	-	2

3.High; 2. Moderate ; 1. Low

Units	COs	K-Level	Section A		Section B	Section C
			MCQs		Either/ or Choice	Open Choice
			No. of Questions	K- Level	No. of Questions	No. of Questions
1	CO1	Up to K3	2	K1\&K1	2(K2 \&K2)	1(K3)
2	CO2	Up to K3	2	K1\&K1	2(K2\& K2)	1(K3)
3	CO3	Up to K3	2	K1\&K1	2(K2 \& K2)	1(K3)
4	CO4	Up to K3	2	K1\&K1	2(K2\& K2)	1(K3)
5	CO5	Up to K3	2	K1\&K1	2(K2\&K2)	1(K3)
No of Questions to be asked			10		10	5
No of Questions to be answered			10		5	3
Marks for each Question			1		4	10
Total marks for eachSection			10		20	30

K1 - Remembering and recalling facts with specific answers
K2 - Basic understanding of facts and stating main ideas with general answers
K3 - Application oriented - Solving problems
Distribution of Section - wise Marks with K Levels

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (Open Choice)	Total Marks	\% of Marks without Choice	
K1	10	-	-	10	10	10
K2	-	40	-	40	40	40
(off) (Rounded						
(23	-	-	50	50	50	50
Kotal Marks	10	40	50	100	100	100%

Lesson Plan

Unit I	Graphs	15 Hours	Mode	
	a.	Basics, Graphs, Pictorial representation	3	
	b.	Subgraphs	2	

C. d. e. f.	Isomorphism and degrees	3	Chalk \& Talk
	Walk and connected graphs	3	
	Cycles in graphs	2	
	Cut-vertices and cut-edges	2	
$\text { Unit II }{ }_{\mathrm{b}}^{\mathrm{a} .}$ c. d.	Eulerian and Hamiltonian graphs	15 Hours	Mode
	Eulerian graphs	4	Chalk \& Talk
	Fleury's algorithm	4	
	Hamiltonian graphs	3	
	Weighted graphs	4	
Unit IIIb. c. d. e.	Bipartite Graphs	15 Hours	Mode
	Bipartite graphs	3	Chalk \& Talk ICT
	Marriage Problem	3	
	Trees	3	
	Connector Problem, Kruskal's Algorithm	3	
	Prim's Algorithm.	3	
a. b. Unit IV ${ }_{C}$ d. e. f.	Matrix and Planar graphs	15 Hours	Mode
	Matrix representation	2	Chalk \& Talk
	Planar graphs	3	
	Euler formula	2	
	Platonic solids	3	
	Dual of a plane graph	3	
	Characterization of Planar graphs	2	
	Colouring and Directed graphs	15 Hours	Mode
	Colourings	2	Chalk \& Talk
	Vertex colouring	3	
	Edge colouring	3	
	Related Theorems	3	
	An algorithm for vertex colouring	2	
	Directed graphs	2	

Course designed by Dr. P. Pandiammal

Programme	B.Sc Mathematics	Programme Code	UMA		
Course Code	20UMAA62	Number of Hours/Cycle	5		
Semester	VI	Max. Marks	100		
Part	III	Credit	5		
Allied Course VIII					
Course Title	Mathematical Statistics- II		L	T	P
Cognitive Level	Up to K3		75	-	-

L-Lecture Hours, T-Tutorial Hours, P-Practical Hours

Preamble

This is the second segment of a sequential course as a tool for solving problems in real life. The aim of this course is to enable the students to understand statistics. The course deals with analysis of variance, theory of attributes and statistical quality control.

Unit I	Test of Significance - Large Samples	15 Hours
	Tests of Significance for Large samples - Sampling - Sampling distribution - Testing of hypothesis - Procedure Test of Significance for proportions and percentages - Test of Significance for means - Test of Significance for	

	difference of sample means -Test for standard deviation - Test of Significance for correlation Coefficient.	
Unit II	Test of Significance - Small Samples	15 Hours
	Small samples - Test of significance based on t-distribution - Test of significance based on F - test - Test for significance of an observed sample correlation. Test Based on χ^{2} Distribution - Introduction - χ^{2} - test for population variance $-\chi^{2}$ - test to test the goodness of fit - test for independence of attributes.	
Unit III	Index numbers	
	Index Numbers - Aggregate method - Average of price relatives method - Weighted index numbers - consumer price index numbers -conversion of chain base index number into fixed base index and conversely - Related Problems.	15 Hours
Unit IV	Theory of attributes	15 Hours
	Theory of attributes - Introduction - Attributes - Dichotomisation - consistency of Data - Independence and association of data - Related Problems.	
Unit V	Analysis of variance	15 Hours
	Analysis of Variance - Introduction - One criterion of classification - Two criteria of classification - Three criteria of classification (Latin square) - Related Problems.	

Pedagagy

Classroom lectures, ICT, Participatory method of teaching ,group discussion and Quiz.

Text Book

1.Arumugam. S and Thangapandian Isaac.A,(2016) Statistics, New Gamma Publications Private Limited.
Unit I: Chapter 14
Unit II: Chapter 15 and 16
Unit III: Chapter 9
Unit IV: Chapter 8
Unit V: Chapter 17

Reference Books

1. Dr. S.P. Gupta, Dr. M.P. Gupta (2010),Business Statistics, Sultan Chand \& Sons Educational Publishers, New Delhi.
2. P.R. Vittal (2002), Mathematical Statistics, Margham Publications, Chennai.
3. Gupta. S.C and Kapoor.V.K, Mathematical Statistics,(2008) Sultan Chand and Sons.

E-Resources

- http://ndl.iitkgp.ac.in
- http://ocw.mit.edu
- http://mathforum.org
- https://nptel.ac.in/course.html

Course Outcomes

After completion of this course, the students will be able to:

CO1	Distinguish between a population and a sample and explain testing of hypothesis
CO2	Explain chi square distribution, $\mathrm{t}-$ distribution and describe their various applications is Statistics and Interpret statistical and practical significance

CO3	Calculate various index numbers.
CO4	Develop the statistical techniques used in the theory of attributes
CO5	Define F- distribution and apply it to solve problems in analysis of variance.

Mapping of Course Outcomes (COs) with Programme Specific Outcomes

	PS O 1	PS O	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8	PSO 9	PSO 10	PS O 11	PSO 12
CO 1	3	2	3	2	2	2	3	2	-	-	-	2
CO 2	3	2	3	2	2	2	3	2	-	-	-	2
CO 3	2	3	3	2	2	3	2	2	-	-	-	2
CO 4	2	3	3	3	1	2	3	2	-	-	-	2
C 05	3	2	3	2	1	2	3	2	-	-	-	3

3.High; 2. Moderate ; 1. Low

Articulation Mapping - K Levels with Course Outcomes (COs)

Units	COs	K-Level	Section A		Section B Either/ or Choice	Section COpen Choice
			MCQs			
			No. of Questions	K- Level	No. of Questions	No. of Questions
1	CO1	Up to K3	2	K1\&K2	2(K2 \& K2)	1(K3)
2	CO2	Up to K3	2	K1\&K2	2(K2\& K2)	1(K3)
3	CO3	Up to K3	2	K1\&K2	2(K2\& K2)	1(K3)
4	CO4	Up to K3	2	K1\&K2	2(K2\& K2)	1(K3)
5	CO5	Up to K3	2	K1\&K2	2(K2\&K2)	1(K3)
No of Questions to be asked			10		10	5
No of Questions to be answered			10		5	3
Marks for each Question			1		4	10
Total marks for eachSection			10		20	30

K1 - Remembering and recalling facts with specific answers
K2 - Basic understanding of facts and stating main ideas with general answers
K3 - Application oriented - Solving problems
Distribution of Section - wise Marks with K Levels

K Levels	Section (No Choice)	Section B B (Either/or)	Section C (Open Choice)	Total Marks	\% of Marks without Choice	Consolidated (Rounded off)
K1	5	-	-	5	5%	5%
K2	5	40	-	45	45%	45%
K3	-	-	50	50	50%	50%
Total Marks	10	40	50	100	100%	100%

Lesson Plan

Unit I	Test of Significance - Large Samples	15 Hours	Mode
	a. Sampling	2	Chalk \& Talk ICT
	b. Sampling distribution	1	
	c. Testing of hypothesis \& Procedure Test of Significance for proportions and percentages	4	
	d. Test of Significance for means	2	
	e. Test of Significance for difference of sample means	2	
	f. Test for standard deviation	2	
	g. Test of Significance for correlation Coefficient.	2	
Unit II	Test of Significance - Small Samples	15 Hours	Mode
	a. Test of significance based on t-distribution.	3	Chalk \& Talk ICT
	b. Test of significance based on F test	2	
	c. Test for significance of an observed sample correlation	2	
	d. Test Based on χ^{2} Distribution - Introduction	1	
	e. χ^{2} - test for population variance	2	
	f. χ^{2-} test to test the goodness of fit	2	
	g. Test for independence of attributes.	3	
Unit III	Index numbers	15 Hours	Mode
	a. Index Numbers	1	Chalk \& Talk ICT
	b. Aggregate method	2	
	c. Average of price relatives method	3	
	d. Weighted index numbers	4	
	e. Consumer price index numbers	2	
	f. conversion of chain base index number into fixed base index and conversely	3	
Unit IV	Theory of attributes	15 Hours	Mode
	a.Theory of attributes - introduction	1	Chalk \& Talk ICT
	b. Attributes	4	
	c. Dichotomisation	2	
	d. consistency of Data	4	
	e. Independence and association of data	4	
Unit V	Analysis of variance	15 Hours	Mode
	a. Analysis of Variance- Introduction	2	Chalk \& Talk ICT
	b. One criterion of classification-	4	
	c. Two criteria of classification	4	
	d. Three criteria of classification (Latin square)	5	

Course designed by Dr. C. Subramani

Programme	B.Sc Mathematics	Programme Code	UMA

Course Code	20UMAE61	Number of Hours/Cycle	4		
Semester	VI	Max. Marks	100		
Part	III	Credit	3		
Core Elective Course II A					
Course Title	Logic and Boolean Algebra	L	T	P	
Cognitive Level	Up to K3	$\mathbf{6 0}$	-	-	

L-Lecture Hours, T-Tutorial Hours, P-Practical Hours
Preamble
To provide the students, the basic knowledge of logic, normal forms ,theory of inference and make the students to learn lattices through algebraic operations.

Unit I	Logic	12 Hours
	Introduction-TF-Statements-Connectives-Conjunction- Disjunction- Negation-Conditional Statements-Biconditional Statements-Truth table of a formula	
Unit II	Normal Forms	$\mathbf{1 2}$ Hours
	Tautology-Tautological implications and Equivalence of formulae-Normal Forms	
Unit III	Theory of Inference	12 Hours
Unit IV	Principal Normal Forms-Theory of inference-Quantifiers	12 Hours
	Relations and Lattices Equivalence Relation - Lattices- Hasse Diagrams- Definitions-Some Properties of Lattices-Duality Principle- Lattice through Algebraic operations	
Unit V	Boolean Algebra	$\mathbf{1 2}$ Hours
	New Lattices-Lattice Homomorphism-Modular and Distributive Lattices-Boolean Algebra	

Classroom lectures, ICT, Participatory method of teaching ,group discussion and Quiz.

Text Book

1.Dr.M.K.Venkataraman,Dr.N.Sridharan,N.Chandrasekaran,(2007),Discrete Mathematics, The National Publishing Company, Chennai.

Reference Book(s)

1.Seymour Lipschutz, Marc Lars Lipson,(2010),Discrete Mathematics, Tata McGraw Hill Education Private Limited, New Delhi.
2.T.Veerarajan,(2014),Discrete Mathematics with GRAPH THEORY and

COMBINATORICS, McGraw Hill Education(India) Private Limited, New Delhi.
3.G.Balaji,(2015),Discrete Mathematics, G.Balaji Publishers, Chennai.

E-Resources

- http://ndl.iitkgp.ac.in
- http://ocw.mit.edu
- http://mathforum.org
- https://nptel.ac.in/course.html

Course Outcomes

After completion of this course, the students will be able to:

CO1	Apply Logic in Mathematics that can be defined as the study of valid reasoning.
CO2	Apply Tautological implications and Equivalence, also learn Normal form.
CO3	Learn and apply theory of inferences and Quantifiers.
CO4	Recall relations and apply through Algebraic operations.
CO5	Understand and apply the concepts and significance of lattices and Boolean algebra which are widely used in computer science.

Mapping of Course Outcomes (COs) with Programme Specific Outcomes

	PS O 1	PS O2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8	PSO 9	PSO 10	PS O 11	PSO 12
CO 1	3	3	2	3	2	3	3	2	-	-	-	2
CO 2	2	3	3	2	2	3	3	2	-	-	-	2
CO 3	3	2	3	2	2	3	2	2	-	-	-	2
CO 4	2	2	3	2	2	3	2	2	-	-	-	2
C 05	3	2	3	2	2	3	2	2	-	-	-	2

3.High; 2. Moderate ; 1. Low

Articulation Mapping - K Levels with Course Outcomes (COs)

Units	COs	K-Level	$\begin{gathered} \hline \text { Section A } \\ \hline \text { MCQs } \end{gathered}$		Section B Either/ or Choice	Section C Open Choice
			No. of Questions	K- Level	No. of Questions	No. of Questions
1	CO1	Up to K3	2	K1 \& K1	2(K2\& K2)	1(K3)
2	CO2	Up to K3	2	K1 \& K1	2(K2\& K2)	1(K3)
3	CO3	Up to K3	2	K1 \& K1	2(K2\& K2)	1(K3)
4	CO4	Up to K3	2	K1 \& K1	2(K2\& K2)	1(K3)
5	CO5	Up to K3	2	K1 \& K1	2(K2\&K2)	1(K3)
No of Questions to be asked			10		10	5
No of Questions to be answered			10		5	3
Marks for each Question			1		4	10
Total marks for each Section			10		20	30

K1 - Remembering and recalling facts with specific answers
K2 - Basic understanding of facts and stating main ideas with general answers
K3 - Application oriented - Solving problems

Distribution of Section - wise Marks with K Levels

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (Open Choice)	Total Marks	\% of Marks without Choice	Consolidated (Rounded off)
K1	10	-	-	10	10%	10%
K2	-	40	-	40	40%	40%
K3	-	-	50	50	50%	50%
Total Marks	10	40	50	100	100%	100%

Lesson Plan

Unit I	Logic	12Hours	Mode
	a. Introduction-TF-Statements	2	Chalk \& Talk ICT
	b. Connectives-Conjunction	2	
	c. Disjunction- Negation	2	
	d. Conditional Statements-Biconditional statements	3	
	e. Truth table of a formula	3	
Unit II	Normal Forms	12 Hours	Mode
	a. Tautology	3	Chalk \& Talk ICT
	b. Tautological implications and Equivalence of formulae	4	
	c. Normal Forms	5	
Unit III	Theory of Inference	12Hours	Mode
	a. Principal Normal Forms	4	Chalk \& Talk ICT
	b. Theory of inference	4	
	c. Quantifiers	4	
Unit IV	Relations and Lattices	12 Hours	Mode
	a. Relations-Equivalence Relation	2	Chalk \& Talk ICT
	b. Lattices-Hasse Diagrams- Definitions	2	
	c. Some Properties of Lattices	2	
	d. Duality Principle	3	
	e. Lattice through Algebraic operations	3	
Unit V	Boolean Algebra	12Hours	Mode
	a. New Lattices	3	Chalk \& Talk ICT
	b. Lattice Homomorphism	3	
	c. Modular and Distributive Lattices	3	
	d. Boolean Algebra	3	

Course designed by Dr. J.Kaliga Rani

Programme	B.Sc	Programme Code	UMA
Course Code	20UMAE6 2	Number of Hours/Cycle	4
Semester	VI	Max. Marks	100
Part	III	Credit	3
Core Elective Course II A			
Course Title	Fuzzy Sets		
Cognitive Level			

Preamble

On the successful completion of the course,students will be able to
understand the concept of uncertainty
and fuzziness. Analyze fuzzy relationspracticing fuzzy arithmetic and construction of fuzz y sets.

Unit I	Fuzzy Set	12 Hours
	Fuzzy Set: Introduction- Visual basic types -basic concepts - Fuzzy sets verses crisp Sets: -Additional properties of $\alpha-$ Cuts -Representation of Fuzzy sets - Extension Principle for fuzzy sets	
Unit II	Operation on Fuzzy Sets	12 Hours
	Operation on Fuzzy Sets: Types of Operations -Fuzzy Complements - Fuzzy intersections - fuzzy Unions - Combination of operations	
Unit III	Fuzzy arithmetic operation	12 Hours
	Fuzzy arithmetic - Fuzzy numbers - linguistic variables - arithmetic operations on intervals - arithmetic operations on Fuzzy numbers - la ttice of Fuzzy numbers - Fuzzy equations	
Unit IV	Fuzzy relations	11 Hours
Unit V	Fuzzy relations - binary Fuzzy relations - binary relatio n on a single set -Fuzzy equivalence relation - Fuzzy ordering relation	
	Constructing Fuzzy sets	

Pedagogy

Classroom lectures, ICT, Participatory method of teaching, group discussion and Quiz
Text Book

1. George J. Klir and Bo Yuan,(2005), "Fuzzy Sets and Fuzzy Logic Theory and Applications", Prentice - Hall of India.

Reference Book(s)

1. Ganesh .M ,(2010), "Introduction to Fuzzy Sets and Fuzzy Logic", Prentice - Hall of India.
2. Pundir.pundir,(2008), "Fuzzy sets and their applications", pragathi edition.
3. H.J. Zimmermann,(1996), "Fuzzy sets theory",Allied Pulishers limited, NewDelhi

E-Resources

- https://en.wikipedia.org/wiki/Fuzzy_set
- http://www.sciencedirect.com/science/article/pii/S001999586590241X/pdf
- https://www.researchgate.net/publication/

260990913_Fuzzy_Sets_Fuzzy_Logic_Fuzzy_Methods_with_Applications

Course Outcomes

After completion of this course, the students will be able to:

CO1	Understand basic concepts on fuzzy sets and crisp set, applying properties of α-cuts can represent fuzzy sets.
CO 2	Understand types of unary, binary and combinations of operations.
CO 3	Define fuzzy arithmetic, fuzzy numbers, Linguistic variables, fuzzy equations.
CO 4	Illustrate fuzzy relations, composition of fuzzy relations and ordering relation.
CO 5	Learn direct and indirect methods of construction and Lagrange interpolation, least square curve fitting.

Mapping of Course Outcomes (COs) with Programme Specific Outcomes

	$\begin{gathered} \hline \text { PSO } \\ 1 \end{gathered}$	$\begin{aligned} & \hline \text { PS } \\ & \text { O2 } \end{aligned}$	$\begin{gathered} \hline \text { PSO } \\ 3 \end{gathered}$	$\begin{gathered} \hline \text { PSO } \\ 4 \end{gathered}$	$\begin{gathered} \hline \text { PSO } \\ 5 \end{gathered}$	$\begin{gathered} \hline \text { PSO } \\ 6 \end{gathered}$	$\begin{gathered} \hline \text { PSO } \\ 7 \end{gathered}$	$\begin{gathered} \hline \text { PSO } \\ 8 \end{gathered}$	$\begin{gathered} \text { PSO } \\ 9 \end{gathered}$	$\begin{gathered} \hline \text { PSO } \\ 10 \end{gathered}$	$\begin{gathered} \hline \text { PSO } \\ 11 \end{gathered}$	$\begin{gathered} \hline \text { PS } \\ \text { O } \\ 12 \end{gathered}$
CO1	1	1	1	1	2	1	1	1	1	1	1	1
CO2	1	3	2	1	1	1	1	1	1	1	1	1
CO3	2	3	1	2	1	1	1	1	1	1	1	1
CO4	2	3	1	2	1	1	1	1	1	1	1	1
CO5	1	3	2	2	1	1	1	1	1	1	1	1

1.High; 2. Moderate ; 1. Low

Units	COs	K-Level	$\begin{gathered} \hline \text { Section A } \\ \hline \text { MCQs } \end{gathered}$		Section B Either/ or Choice No. of Questions	品 Section C Open Choice No. of Questions
			No. of Questions	$\begin{aligned} & \hline \text { K- } \\ & \text { Level } \end{aligned}$		
1	CO1	Up to K3	2	K1\&K1	2(K2\&K2)	1(K3)
2	CO2	Up to K3	2	K1\&K1	2(K2\&K2)	1(K3)
3	CO3	Up to K3	2	K1\&K1	2(K2\&K2)	1(K3)
4	CO4	Up to K3	2	K1\&K1	2(K2\&K2)	1(K3)
5	CO5	Up to K3	2	K1\&K1	2(K2\&K2)	1(K3)
No of Questions to be asked			10		10	5
No of Questions to be answered			10		5	3
Marks for each Question			1		4	10
Total marks for each Section			10		20	30

K1 - Remembering and recalling facts with specific answers
K2 - Basic understanding of facts and stating main ideas with general answers
K3 - Application oriented - Solving problems
Distribution of Section - wise Marks with K Levels (Model)

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (Open Choice)	Total Marks	\% of Marks without Choice	Consolidated (Rounded off)
K1	10	-	-	10	10%	10%
K2	-	40	-	40	40%	40%
K3	-	-	50	50	50%	50%
Total Mark s	10	40	50	100	100%	100%

Lesson Plan

Unit I		Fuzzy Set	12 Hours	Mode
	a.	Introduction	1	ICT, Chalk \& Talk
	b.	Visual basic types	2	
	c.	Fuzzy sets verses crissets	2	
	d.	Additional properties of α - Cuts	2	
		Representation of Fuzzy sets	2	
		Extension Principle for fuzzy sets	3	
Unit II	a. b. c. d. e.	Operation on Fuzzy Sets	12 Hours	Mode
		Types of Operations	1	ICT, Chalk \& Talk
		Fuzzy Complements	3	
		Fuzzy intersections	3	
		Fuzzy Unions	3	
		Combination of operations	2	
Unit III	a. b. c. d. e.	Fuzzy arithmetic Operations	12 Hours	Mode
		Fuzzy numbers	3	ICT, Chalk \& Talk
		Linguistic variables	1	
		Arithmetic operations on intervals	3	
		Lattice of Fuzzy numbers	2	
		Fuzzy equations	3	
Unit IV		Fuzzy relations	11 Hours	Mode
	a.	Binary Fuzzy relations	2	ICT, Chalk \& Talk
	b.	Binary relation on a single set	2	
	c.	Fuzzy equivalence relation	4	
	d.	Fuzzy ordering relation	3	
Unit V	a. b. c. d. e.	Constructing Fuzzy sets	13 Hours	Mode
		Direct method with one expert	3	ICT, Chalk \& Talk
		Direct method with multiple expert	3	
		Indirect method with one expert	3	
		Lagrange interpolation	2	
		Least square curve fitting method of construction	2	

Course designed by: Mrs. S. Divya Priya

Programme	B.Sc Mathematics	Programme Code	UMA
Course Code	20UMAE63	Number of	4

Semester	VI	Hours/Cycle			
Part	III	Max. Marks	100		
Core Elective Course II B					
Course Title	Mathematical Modelling	$\mathbf{3}$			
Cognitive Level	Up to K3	L	T	P	

L-Lecture Hours, T-Tutorial Hours, P-Practical Hours
Preamble:
The aim of this course is to enable the students to acquire basic technique of mathematical modelling through ODE of first and second order, Differential Equations and Graphs and problem solving ability at various level.

Unit I	Mathematical Modelling through ordinary differential equations of first order	$\mathbf{1 2}$ Hours
	Mathematical Modelling through ordinary differential equations of first order - Linear and nonlinear growth and decay models - Compartment models.	
Unit II	Mathematical Modelling through system of ordinary differential equations of first order	$\mathbf{1 2}$ Hours
	Mathematical Modelling in population Dynamics - Mathematical Modelling of epidemics -Compartment models. - Mathematical Modelling in Economics.	
Unit III	Mathematical Modelling through ordinary differential equations of second order	$\mathbf{1 2}$ Hours
Unit IV	Mathematical Modelling of Planetary motions - Mathematical Modelling of circular motion and Motion of Satellites	
	Mathematical Modelling through difference equation The need for Mathematical Modelling through Difference equations.- Basic theory of linear Difference Equations with constant coefficients- Mathematical Modelling through Difference equations in Economics and Finance	$\mathbf{1 2 ~ H o u r s ~}$
Unit V	Mathematical Modelling through Graphs	$\mathbf{1 2 ~ H o u r s ~}$
	Situations that can be Modelled through Graphs - Mathematical models in terms of Directed Graphs Mathematical models in terms of Signed Graphs.- Mathematical modellings in terms of Weighted Digraphs	

Text Book

1.J.N. Kapur (2013) ," Mathematical Modelling ",New Age International Publishers,New Delhi

Reference Book(s)

1. J.N. Kapur (1995) , " Mathematical Modelling in Biology and Medicine ", East West Press,.
2. Singh ,(1985) " Mathematical Modelling ",International Book House ,
3. Frank R.Giordano William P.Fox ,Steven B.Horton ,"A First Course in Mathematical Modeling" (2015) V Edition ,Cengage Learning

E-resources

IIT Lectures, UGC Gyan Dharshan videos
http://ndl.iitkgp.ac.in
http://ocw.mit.edu
https://www.open.ac.uk/courses/modules/mst210
https://nptel.ac.in/course.html

Course Outcomes

CO 1	Understand the Mathematical modeling of ordinary differential equation of first order.
CO 2	Understand the importance of Mathematical modeling in the field of Epidemic ,population dynamics and Economics.
$\mathbf{C O ~ 3}$	Apply the concept of DE to study planetary motion, circular motion on motion of satellite.
$\mathbf{C O ~ 4}$	Develop problem solving skills using linear difference equations with constant coefficients.
$\mathbf{C O ~ 5}$	Identify and appreciate the unifying influence of mathematical modeling in Graph theory.

Mapping of Programme specific outcomes with Course Outcomes

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	3	3	2	2	3	3	3	1	1	1	1	2
CO2	3	3	3	3	1	2	1	1	1	1	1	1
CO3	3	3	2	2	1	3	2	1	1	1	1	1
CO4	3	3	3	3	2	2	2	1	1	1	1	2
CO5	3	3	3	2	1	3	2	1	1	1	1	2

Articulation Mapping - K Levels with Course Outcomes (Cos)

Units	COs	K-Level	Section A		Section B	Section C
			MCQs		Either/ or	Open Choice
			No. of Questions	K- Level	No. of Questions	No. of Questions
1	CO1	Up to K3	2	K1\&K2	2(K2\&K2)	1(K3)
2	CO2	Up to K3	2	K1\&K2	2(K2\&K2)	1(K3)
3	CO3	Up to K3	2	K1\&K2	2(K2\&K2)	1(K3)
4	CO4	Up to K3	2	K1\&K2	2(K2\&K2)	1(K3)
5	CO5	Up to K3	2	K1\&K2	2(K2\&K2)	1(K3)
No of Questions to be asked			10		10	5
No of Questions to be answered			10		5	3
Marks for each Question			1		4	10
Total marks for each Section			10		20	30

K1-Remembering and recalling facts with specific answers
K2-Basic understanding of facts and stating main ideas with general answers
K3-Application oriented-Solving problems

Distribution of Section-wise Marks and K Levels

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (Open Choice)	Total Marks	Consolidated (Rounded off)
K1	5	--	--	5	5%
K2	5	40	-	45	45%
K3	--	-	50	50	50%
Total Marks	10	40	50	100	100%

Lesson Plan

Unit	Lesson Plan	Hours	Mode
I	a. Mathematical Modelling through ordinary differential equations of first order	4	Lecture (Chalk \&Talk)PPTICTGroup discussionQuiz
	b. Linear and nonlinear growth and decay models	4	
	c. Compartment model	4	
II	a. Mathematical Modelling in population Dynamics	3	Lecture (Chalk \& Talk) ICT
	b. Mathematical Modelling of epidemics	3	
	c. Compartment models	3	
	d. Mathematical Modelling in Economics	3	
III	a. Mathematical Modelling of Planetary motions	4	 Talk) PPT ICT
	b. Mathematical Modelling of circular motion and	4	
	c. Motion of Satellites	4	
IV	a. The need for Mathematical Modelling through Difference equations	4	Lecture (Chalk \&Talk)PPTICTGroup discussionQuiz
	b. Basic theory of linear Difference Equations with constant coefficients	4	
	c. Mathematical Modelling through Difference equations in Economics and Finance	4	
V	a. Situations that can be Modelled through Graphs	3	Lecture (Chalk \& Talk) PPT ICT
	b. Mathematical models in terms of Directed Graphs	3	
	c. Mathematical models in terms of Signed Graphs	3	
	d. Mathematical modellings in terms of Weighted Digraphs	3	

Course designed by: Mrs. N. Sakunthala

| Programme | B.Sc Mathematics | Programme Code | UMA | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Course Code | 20UMAS61 | Number of
 Hours/Cycle | 2 | |
| Semester | VI | Max. Marks | 50 | |
| Part | IV | Credit | 2 | |
| Skill Based Course II | | | | |
| Course Title | Number Theory and Inequality | L | T | P |
| Cognitive Level | Up to K3 | 30 | - | - |

L-Lecture Hours, T-Tutorial Hours, P-Practical Hours

Preamble

This course provides the basic concepts of number join as Divisibility, Euler's function, Congruences, Fermat's theorem, Wilson's theorem and Lagrange's theorem.

Unit I		$\mathbf{6}$ Hours		
	Prime and composite numbers - Sieve of Eratosthenes - Divisors of a given number N - Simple problems.			
Unit II		$\mathbf{6}$ Hours		
	Euler's function - Integral part of a real number - The highest power of a prime p contained in n! - The product of r consecutive integers is divisible by r! - Simple problems.			
Unit III		$\mathbf{6}$ Hours		
	Congruences - Numbers in arithmetical progression - Simple problems.			
Unit IV		$\mathbf{6}$ Hours		
	Triangle inequalities - The Arithmetic and Geometric mean -Simple problems.			
Unit V				
	The Harmonic mean - Cauchy-Schwartz inequality - Simple problems.			

Pedagogy
Classroom lectures, ICT , Participatory method of teaching ,group discussion and Quiz.

Text Books

1. Manikavachakam Pillay.T.K., Natarajan. T. \& Ganapathy. K.S., (2011), Algebra vol.-II, S.Viswanathan (Printers \& Publishers) Pvt Ltd., Chennai.
2. Dr. S. Arumugam, A. Thangapandi Isaac, (2011), "Algebra, Theory of Equations, Theory of Numbers and Trignometry", New Gamma Publishing House, Palayamkottai.

Reference Books

1. Dr. Arumugam. S \& Issac , (2003), "Classical Algebra", New Gamma Publishing House, Palayamkottai.
2. Dr. Venkartaraman. M.K., (2010), "Theory of Equations \& Number Theory and Inequality", The National Publishing Company, Chennai.

E-Resources

- https://www.britannica.com/science/number-theory
- https://www.cs.utexas.edu/~isil/cs311h/lecture-num-theory1-6up.pdf
- http://discrete.openmathbooks.org/dmoi2/sec_addtops-numbth.html

Course Outcomes

After completion of this course, the students will be able to:

CO1	Define and Interpret the basic concepts of divisors and Sieve of Eratosthenes.
CO2	Explain Euler's function and solve the integral part of real number.
CO3	Define and develop the concepts of congruences.
CO4	Derive Triangle inequality and Define Arithmetic and Geometric mean.
CO5	Define Harmonic mean and Derive Cauchy-Schwartz inequality.

Mapping of Course Outcomes (COs) with Programme Specific Outcomes

	PS O 1	PS O	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8	PSO 9	PSO 10	PS O 11	PSO 12
CO 1	3	3	3	3	1	3	2	1	-	-	-	2
CO 2	3	2	3	3	1	3	3	1	-	-	-	3
CO 3	2	3	3	2	1	3	2	2	-	-	-	2
CO 4	2	3	3	3	1	2	3	1	-	-	-	2
C 05	3	2	3	2	1	2	3	2	-	-	-	3

3.High; 2. Moderate ; 1. Low

Articulation Mapping - K Levels with Course Outcomes (COs)

Units	Cos	K-Level	Section A	Section B
			Either/ or Choice	Open Choice
		No. of Questions	No. of Question	
1	CO1	Up to K2	$2(\mathrm{~K} 2 \& \mathrm{~K} 2)$	$1(\mathrm{~K} 2)$
2	CO2	Up to K3	$2(\mathrm{~K} 2 \& \mathrm{~K} 2)$	$1(\mathrm{~K} 3)$
3	CO3	Up to K2	$2(\mathrm{~K} 2 \& \mathrm{~K} 2)$	$1(\mathrm{~K} 2)$
4	CO4	Up to K3	$2(\mathrm{~K} 2 \& \mathrm{~K} 2)$	$1(\mathrm{~K} 3)$
5	CO5	Up to K3	$2(\mathrm{~K} 3 \& \mathrm{~K} 3)$	$1(\mathrm{~K} 3)$
No of Questions to be asked	10	5		
No of Questions to be answered	5	3		
Marks for each Question		5	5	
Total marks for each Section	15	15		

K1 - Remembering and recalling facts with specific answers
K2 - Basic understanding of facts and stating main ideas with general answers
K3 - Application oriented - Solving problems

Distribution of Section - wise Marks with K Levels

K Levels	Section A A (Either/or)	Section B (Open Choice)	Total Marks	\% of Marks without Choice	Consolidated (Rounded off)
K1	-	-	-	-	-
K2	24	10	34	61.82%	62%
K3	6	15	21	38.18%	38%
Total Marks	30	25	55	100.00%	100%

Lesson Plan

Unit I ${ }_{\text {b. }}^{\text {b. }}$ d.		6 Hours	Mode
	a. Introduction - Prime and composite numbers	1	Chalk \& Talk
	Sieve of Eratosthenes	1	
	Divisors of a given number N	2	
	Simple problems	2	
$\begin{array}{r} \text { b. } \\ \text { Unit IIC. } \end{array}$d.		6 Hours	Mode
	a. Euler's function	1	Chalk \& Talk
	Integral part of a real number	1	
	The highest power of a prime p contained in n !	1	
	The product of r consecutive integers is divisible by r !	2	
e.	Simple problems	1	
Unit IIb. c.		6 Hours	Mode
	a. Congruences	2	Chalk \& Talk ICT
	Numbers in arithmetical progression	2	
	Simple problems	2	
Unit IV ${ }_{\text {b. }}$ c.		6 Hours	Mode
	a. Triangle inequality	2	Chalk \& Talk
	The Arithmetic mean	2	
	The Geometric mean and simple problems	2	
Unit V b. c.		6 Hours	Mode
	a. The Harmonic mean	2	Chalk \& Talk
	Cauchy Schwarz inequality	2	
	Simple problems	2	

Course designed by: Dr. P. Pandiammal

Programme	B.Sc Mathematics	Programme Code	UMA

Course Code	20UMAS6P	Number of Hours/Cycle	2		
Semester	VI	Max. Marks	50		
Part	IV	Credit	2		
Skill Based Practical II					R Programming
Course Title	R	L	T	P	
Cognitive Level	Up to K3	-	-	30	

L-Lecture Hours, T-Tutorial Hours, P-Practical Hours

Preamble

To develop the computational skills of the students to solve various statistical problems by numerical techniques using R programming.

Course Outcomes:

The student will be able to

1. To show the installation of R programming environment
2. Summarize the fundamental knowledge on basics of data science and R programming.
3. Develop programming in R language for understanding and visualization of data using statistical functions and plots.
4. Create and edit visualization with R.
5. Understand the basics in R programming in terms of constraints, control statements, string functions.

List of Experiments:

1. Write a progam in R to create vectors.
2. Write a progam in R to create matrices.
3. Write a progam in R to create different charts for visualization of given set of data.
4. Write a progam in R to calculate the Mean, Median and Mode of a set of observations.
5. Write a progam in R to calculate standard deviation of a set of observations.
6. Write a progam in R to calculate the Karl Pearson's coefficient of correlation.
7. Write a progam in R to calculate Spearman's Rank correlation coefficients.
8. Write a progam in R to find Regression coefficients and draw regression lines.
9. Write a progam in R test of significance using Chi-square test.
10. Write a progam in R test of significance using Student's t- test.
11. Write a progam in R test of significance using F-test.
12. Write a progam in R to calculate one way and two way classification.

References:

1. Jared P. Lander, R for Everyone: Advanced Analytics and Graphics, (2018) 2nd Edition, Pearson Education.
2. S.R Mani Sekhar and T V Suresh Kumar, (2017) Programming with R, $1^{\text {st }}$ Edition, Cengage India Private Limited.

E-Resources

1. https://www.tutorialspoint.com/r/r normal_distribution.html
2. https://www.r-project.org/

Course designed by: Dr. P. Pandiammal

Programme	B.Sc Mathematics	Programme Code	UMA	
Course Code	20CMAT3P	Number of Hours/Cycle	2	
Semester	III	Max. Marks	50	
Part	-	Credit	2	
Value Added Course I				
Course Title	PYTHON Programming	L	T	P
Cognitive Level	Up to K3	-	-	30

L-Lecture Hours, T-Tutorial Hours, P-Practical Hours
(For DBT star college scheme, for those who join in 2021 and after)

Preamble

To enable the student to acquire knowledge in Python Programming and to understand basic concepts of programming. Also to emphasize the significance of programming and practice them to write the programme.

Course outcome:

The student will be able to

- Understand the basics of algorithmic problem solving.
- Learn to solve problems using python conditionals and Loops.
- Define Python functions and use function calls to solve problems.
- Implement matrix addition and multiplication.
- Find the largest number in a list.
- Draw a circle of square using turtle

List of Experiments:

1. Write a python program to print pyramid pattern of given numbers.
2. Write a python program to find the roots a quadratic equation.
3. Write a python program to find the factorial of the given number using function.
4. Write a python program to implement matrix addition and multiplication.
5. Write a python program to find the largest number in a list using function.
6. Write a python program to find the area of shapes using function.
7. Write a python program to find reverse string, string palindrome, character count and replacing string.
8. Write a python program to create EB bill.
9. Write a python program to swap two variables.
10. Write a python program to draw a circle of square using turtle.

Text Book

1. C.H.Satyanarayana, M. Radhika mani, B. N Jagaderh(2018), PYTHON Programming Margham Publications University press Chennai.

Reference Books

1. Reema Thareja(2017) PYTHON PROGRAMMING using problem solving Approach Oxford university press, NewDelhi.
2. Jeeva Jose and P Sojan Lal(2016), " Introduction to computing and Problem Solving with PYTHON", Khanna Book Publishing Co. (P) Ltd, New Delhi.

E-Resources

1. https://www.youtube.com/watch?v=kqtD5dpn9C8
2. https://www.w3schools.com/python/
3. https://www.tutorialspoint.com/python/index.htm

Course designed by: Dr. J. Kaliga Rani

Programme	B.Sc Mathematics	Programme Code	UMA

| Course Code | 22CMAT4P | Number of
 Hours/Cycle | 2 | |
| :--- | :--- | :--- | :--- | :---: | :---: |
| Semester | IV | Max. Marks | 50 | |
| Part | - | Credit | 2 | |
| Value Added Course II | | | | |
| Course Title | SAGEMATH | L | T | P |
| Cognitive Level | Up to K3 | - | - | 30 |

L-Lecture Hours, T-Tutorial Hours, P-Practical Hours
(For DBT star college scheme, for those who join in 2021 and after)

Preamble

To develop the computational skills of the students to solve various statistical problems by numerical techniques using R programming.

Course outcome

The student will be able to use SAGEMATH as a calculator, implement and illustrate 2-D graphs and 3-D graphs, solving mathematical problems and to plot, using templates and handling mathematical concepts and visualize theoretical concepts.

List of Experiments

1. Finding all local extrema and inflection points of a function.
2. Creating and plotting 2-D graphs and 3-D graphs.
3. Finding the surface area of given surface using package.
4. Finding the approximate roots using Newton's method.
5. Plotting and finding area between curves using integrals.
6. Finding the given group is abelian or not.
7. Finding the volume of solid of revolution.
8. Finding the solution for a system of linear equations.
9. Finding the divergence and curl of vector valued functions.
10. Using differential calculus to analyse a quintic polynomials features, for finding the optimal graphing window.

Reference Book:

1. Razvan A. Mezei, An Introduction to SAGE Programming: With Applications to SAGE, Wiley, 2016

Web References:

1. https://doc.sagemath.org/pdf/en/tutorial/SageTutorial.pdf

Course designed by: Dr. S. Ramachandran

Programme	B.Sc Mathematics	Programme Code	UMA

Course Code	20CMAT5P	Number of Hours/Cycle	2		
Semester	V	Max. Marks	50		
Part	Credit	2			
Value Added Course III					T
Course Title	Office Automation Practical	L	T	P	
Cognitive Level					

(For DBT star college scheme, for those who join in 2020 and after)

Preamble

To provide the students with basic knowledge in MS-word, Relate real life MS Excel application for Provisional or Personal use ,Create a PowerPoint presentation and navigate a slide show in PowerPoint

LIST OF PROGRAMS:-

1. Design a document with atleast 2 pages using MS- Word with different font style, different font size and Header and Footer , with page number
2. Create a daily attendance sheet of a class room for a week with heading, day, Period etc.
3. Design an invitation with two column break, use word to insert picture, design Border shading.
4. Create a yearly Salary report in Excel work sheet, use auto fill to enter the month and to sum the column and row total, to calculate DA and others, to insert date and time function in the footer.
5. Create yearly budget of a company and create different types of chart for a data in MS-Excel.
6. Create Students Mark list for three subjects and to list the result and rank by using string function and logical function
7. Present the college or any publishing work using auto content wizard with 8 slides in MS- Power Point.
8. Create a slide show using blank presentation with atleast 10 slides
9. Create a main document and database of Address and merge them using mailmerge tools.

Course Outcomes

After completion of this course, the students will be able to:

- Demonstrate fundamental knowledge of Ms word
- Understand a word processor, create edit and format document
- Determine and use various workplace application software to develop, document, manage office project, procedure and system.
- Create different type of chart using Ms-Excel for real life applications
- Apply Power point technique to create promotional handouts

Text Book

1. C.Nellai Kannan,(2008),MS-OFFICE,Nels Publications,Tirunrlveli Town,Tamilnadu. Course designed by Dr. P. Pandiammal

Programme	B.Sc Mathematics	Programme Code	UMA

Course Code	20CMAT6P	Number of Hours/Cycle	2		
Semester	VI	Max. Marks	50		
	Credit	2			
Value Added Course IV					
Course Title	LATEX	L	T	P	
Cognitive Level	Up to K3	-	-	$\mathbf{3 0}$	

Preamble

To provide the students the basic concepts of LaTeX and the students will be able to create and design documents in LaTeX and presentations.

List Of Programs

1. Type a document in different alignment (Left, Right, Center, Justify).
2. Type a Letter for applying a job.
3. Type your own Bio-Data.
4. Draw a Table structure.
5. Type a given Mathematical expression using Differentiation ,Integration and Trigonometry
6. Type a given expression using all inequalities.
7. Draw any picture on insert in LateX file.
8. Type a given Question paper
9. Convert one LateX file into power point presentation
10. Type a given Science Direct Journal

Course Outcomes

After completion of this course, the students will be able to:

- Demonstrate fundamental knowledge of typing LATEX
- Apply the commands and create a document ,list, boxes and tables
- Determine and use various application software to document in Research area
- Apply Mathematical Environment to type Mathematical expression
using Differentiation, Integration and Trigonometry
- Able to draw any picture on insert in LateX file

Text Book

1. Helmut Kopka, Patrick W.Daly(1999), A Guide to LATEX Document Preparation for Beginners and Advanced Users, Addison Wesley, England.

Reference Books

1. David F-Griffiths and Desmond J. Higham(1996), Learning LATEX, SIAM(Society for Industrial and Applied Mathematics), Publishers, Phidelphia,.
2. Martin J.Erickson and Donald Bindner,(2011), A Student’s Guide to the study, Practice and Tools of Modern Mathematics,CRC Press, Boca Raton ,FI .
3. K B M Nambudiripad,(2018), Latex for beginners, Narosa Publishing House,Private limited, New Delhi.

Course designed by: Dr. J. Kaliga Rani

